FIRST YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL ENGINEERING.

SMA 2273: APPLIED MATHEMATICS
DECEMBER: 2011
TIME: 2 HOURS
INSTRUCTIONS. Attempt Question One and any other Two Questions.
QUESTION ONE (30 marks) compulsory.
a) Explain the following terms as used in applied mathematics:
i) Trajectory
1 mark
ii) Coplanar forces 1 mark
iii) Range 1 mark
iv) Concurrent forces 1 mark
b) A particle is moving along a curve defined by the parametric equations $x=2 \cos 3 t, y=2 \sin 3 t$ and $z=4 t^{2}$, find:
i) the velocity at any time t.

2 marks
ii) the magnitude of acceleration at time $\mathrm{t}=0 \mathrm{~s}$.

3 marks
c) An aeroplane moves in a northwesterly direction at $125 \mathrm{~km} / \mathrm{hr}$ relative to the ground due to the fact that there is a westerly wind of $50 \mathrm{~km} / \mathrm{hr}$ relative to the ground. Determine how fast and in what direction the plane would have traveled if there was no wind.

4 marks
d) If the time of oscillation T for a bob of mass m in a simple pendulum of length L is written as $T=A m^{x} l^{y} g^{z}$
, where $\mathrm{A}, \mathrm{x}, \mathrm{y}$ and z are constants, find by considering dimensions the values of x, y and z .
e) A bullet of mass 30 g is fired horizontally into a small block of wood of mass 8 kg which is suspended by a string 2 m long. The bullet remains embedded in the wood and the block rises until the string makes an angle of 30° with the vertical. Find the velocity of the bullet before impact.

6 marks
f) A particle is projected from a point 0 with an initial velocity of $50 \mathrm{~m} / \mathrm{s}$ in a direction making an angle α
with the vertical. At the same instant a particle is projected vertically downwards with the same speed from a point in the plane of the line of flight 100 metres horizontally and 200 metres vertically
from 0. If the two collide find in the upper register and the time of flight to the point of impact. 6 marks

QUESTION TWO (20 MARKS)

a) Find the work done in moving a particle in moving a particle once around a circle C in the xy -plane, If the particle has centre at the origin and radius 3 while the force field is given by $\vec{F}=(2 x-y+z) \hat{i}-\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k}$

6 marks

$$
\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{E A}, \overrightarrow{A F}
$$

b) ABCDEF is a regular hexagon. The forces of magnitudes $3 \mathrm{~F}, 4 \mathrm{~F}, 2 \mathrm{~F}, 6 \mathrm{~F}$ act along respectively. Find the magnitude and direction of the resultant force. 6 marks

$$
\overrightarrow{v_{1}}=4 \hat{i}-5 \hat{j}+3 \hat{k}
$$

c) Find the constant force needed to accelerate a mass of 40 kgs from a velocity of

QUESTION THREE (20 MARKS)
a) A particle of mass 2 kg rests on the surface of a rough plane inclined at to the horizontal, it is connected by a light inelastic string passing over a light smooth pulley at the top of the plane to a particle of mass 3 kg which is hanging freely. If the coefficient of friction between the 2 kg mass and the plane is 0.333 find:
i) The acceleration of the system when it is released from rest.
ii) Tension in the string.

2 marks
iii) Force exerted by the string on the pulley.
b) A force of magnitude 80 N acts along the positive x -axis and another force of magnitude 50 N is 120^{0}
inclined at an angle of to this axes. Find their resultant force; stating the magnitude and direction.

$$
\vec{r}=\left(4 t^{2}-t^{3}\right) \hat{i}-5 t \hat{j}+\left(t^{4}-2\right) \hat{k}
$$

c) A particle of mass 3 units moves along a space curve defined by find i) the momentum.

3marks
ii) force acting on it at time $\mathrm{t}=2$.

QUESTION FOUR (20 MARKS)

a) A cyclist moves against a resistance to motion which is proportional to his speed. At a power output of 75 W he has a maximum speed of $5 \mathrm{~m} / \mathrm{s}$ on a level road. If the cyclist and bicycle weigh

$$
\theta=\sin ^{-1} \frac{1}{40}
$$

800 N , find the maximum speed he reaches when travelling down a hill inclined at to the horizontal when working at the rate of 25 W .

5 marks
b) A particle moves along a path whose parametric equations are

$$
x=5 e^{-2 t} \quad y=4 \cos 3 t
$$

$z=2 \sin 3 t$

$$
t=\frac{\pi}{3}
$$

where t is the time. Find the magnitude of velocity and acceleration at
6 marks
c) A uniform ladder 5 m long weighing 400 N rests on a rough horizontal ground and against a

$$
30^{0}
$$

smooth vertical wall. If its inclined at to the vertical find the normal reaction of the ladder on the ground and the wall.

5 marks

$$
P=\frac{200}{x^{2}}
$$

d) A particle is moved along the x -axis by a force P given by the work done assuming the force is in Newton's and displacement in metres. 4 marks QUESTION FIVE (20 MARKS)
a) A heavy non -uniform plank XY whose weight is 200 N rests in a horizontal position on vertical supports at X and Y . The length of the plank is 6 m and the centre of gravity is 2.5 m from X . find the force exerted by each support.

3 marks
b) A particle of unit mass moves along a curve in a force field given by $\vec{F}=(6 t-8) \hat{i}-60 t^{3} \hat{j}+\left(20 t^{3}+36 t^{2}\right) \hat{k}$ where t is the time. If its initial position and velocity are

$$
\overrightarrow{r_{o}}=2 \hat{i}-3 \hat{k} \text { and } \overrightarrow{v_{o}}=5 \hat{i}+4 \hat{j}
$$

given respectively by
find:
i) The position, velocity, acceleration and momentum of the particle at time $t=2$ sec. 8 marks
ii) the kinetic energy at $\mathrm{t}=2$ sec.

2 marks
iii) work done from $\mathrm{t}=0$ to $\mathrm{t}=2$ sec.

2 marks

$$
R=\frac{u^{2} \sin 2 \alpha}{g}
$$

horizontal is given by hence show that the range is a maximum of $\alpha=\frac{\pi}{4}$ 5 marks

