

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING

ECE 2305: PUBLIC HEALTH ENGINEERING I

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consists of FIVE questions. Answer question ONE (Compulsory) and any TWO questions Maximum marks for each part of a question are as shown This paper consists of THREE printed pages

Question One (Compulsory)

a) Explain with the aid of a diagram the hydrologic cycle. (5marks)

b) Discuss the merits and demerits of rain water from quality point of view. (5 marks)

- c) With the aid of a sketch, describe the formation of the following:
 - (i) Gravity spring
 - (ii) Artesian spring

(6 marks)

	Water		Water
ime	consumptio	Time in	consumption
in Hours	n m³/hr	hours	m³/hr
0.00	0	13.00	263
1.00	108	14.00	259
2.00	97	15.00	263
3.00	90	16.00	263
4.00	79	17.00	274
5.00	76	18.00	299
6.00	104	19.00	364
7.00	158	20.00	336
8.00	212	21.00	212
9.00	248	22.00	148
10.00	262	23.00	140
11.00	284	24.00	112
12.00	270		

d) The hourly water consumption of a town is given in the table below:

Determine:

- The constant 24 hour pumping rate (i)
- (ii) The required storage capacity to equalize demand over a 24 hour period

Question Two

a)	Describe the general requirements of a distribution system	(5 marks)
b)	Describe the dead end layout of water distribution system and state its two advantages disadvantages.	and two (5 marks)
c)	Describe the grid iron layout of water distribution system and state its two advantages disadvantages	and two (5 marks)
d)	Explain the intermittent system of water supply and its drawbacks	(5 marks)
Qu	estion Three	
a)	State FIVE objectives to be achieved through purification of water	(5 marks)
b)	Describe the clearing of slow sand filter	(5 marks)
c)	Describe the clearing of rapid sand filter	(5 marks)

(14 marks)

d)	Two sedimentation basis area 30m in diameter with 2.4m side water depth. Single weirs are located on the peripheries of the tanks. For a water flow of 35,000m ³ /d, calculate: (i) The overflow rate				
	(ii) (iii)	Detention time Weir loading	(5 marks)		
Qu	lestion	Four			
a)	Discus (i) (ii) (iii)	ss the causes of the following parameters in raw water: Turbidity Taste and odour Colour	(6 marks)		
b)	Descri (i) (ii) (iii)	be the effects of the following chemical impurities found in raw water: Iron and manganese Fluorides and iodides Sodium and potassium	(6 marks)		
c)	Descri	be a jar test for determining the optimum coagulant dose.	(6 marks)		
d)	What i	is bio-chemical oxygen demand?	(2 marks)		
Qu	lestion	Five			
a)	Briefly (i) (ii) (iii)	y explain why and where the following are used in water rains: Air values Wash outs Check values	(6 marks)		
b)	Descri	be the functions of storage and distribution reservoirs	(4 marks)		
c)	Descri	(4 marks)			

d) Calculate the size of a rectangular tank to treat 1,800m³/d of water. The detention period may be assumed as 4 hours and overflow rate less than 50m³/m²/d. Take the total depth of water as 4.2m (6 marks)