THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

CERTIFICATE IN ELECTRICAL POWER ENGINEERING (CEPE 2) CERTIFICATE IN ELECTRICAL AUTOMATION ENGINEERING (CEAE 2)

CEPE 2/CEAE 2: ENGINEERING MATHEMATICS II
SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Non-programmable calculator
- Mathematical tables
- Graph paper
- Geometrical set
- Non-mobile phones

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown.

This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1

a) Express the following angles in radians in terms of
i. $\quad 150^{\circ}$
ii. 270°
b) Express the following in partial fractions

$$
\frac{2 x^{3}+3 x^{2}-54 x+50}{x^{2}+2 x-24}
$$

i.
(8 marks)

$$
\frac{4 x-28}{x-6 x+8}
$$

ii.
c) (i) Find the diameter and circumference of a circle if an arc of length 5.67 cm subtends an angle of 2.15 radians
(4 marks)

$$
y=x^{2}-3 x-4 \quad y=x-2
$$

(ii) Plot the graphs of and on the same axes between $x=-3$ and $x=5$. Determine the values of x at the points of intersection and give the quadratic equation in x of which these values are the roots
(6 marks)
(iii) The temperatures of a component was monitored at regular intervals on 80 occasions. The frequency distribution was as follows

Temperature $\mathrm{x}\left({ }^{\circ} \mathrm{c}\right)$	$30.0-30.2$	$30.3-30.5$	$30.6-30.8$	$30.9-31.1$	$31.2-32.4$	$31.5-31.7$	$31.8-32.0$
Frequency	6	12	15	20	13	9	

Draw a frequency histogram to represent this information (4 marks)

SECTION B (Answer any TWO questions from this section - 20 marks each)

Question 2

a) Prove the following trigonometric identities

$$
\sin \theta \cos \theta=\frac{\sin ^{2} \theta}{\tan \theta}
$$

i.
(3 marks)

$$
\sin \theta \sec \theta=\tan \theta
$$

ii.
(2 marks)

$$
\frac{\operatorname{cosec} \theta+\cos \theta+\tan \theta}{(\tan \theta+\sec \theta)}=\frac{\cos \theta+1}{\sin \theta+1}
$$

iii.
b) (i) The angle of elevation from a given point of the tip of a tower which stands on horizontal ground is 22°
From a point 120 m nearer to the tower the angle of elevation is 44°. Find the height of the tower

$$
\begin{equation*}
S=u t+\frac{1}{2} f t^{2} \tag{8marks}
\end{equation*}
$$

(ii) If
express f in terms of s, u and t
(4 marks)

Question 3

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi \quad \cos 60=1 / 2, \cos 45=\frac{1}{\sqrt{2}}, \sin 60=\frac{\sqrt{3}}{2}
$$

a) (i) Give
and and $\sin 45=\frac{1}{\sqrt{2}}$
. Express cos 14° in surd form (4 marks)
(ii) Evaluate sec 483o46' and show the quadiant on which it lies on cohesion axes (4 marks)
b) (i) The area of a field is in the form of a quadrilatual PQRS as shown in fig 1 below. Determine its area.

Fig 1
(ii) The values of the y ordinates of a curve and their distance x from the origin are given in the table below. Plot the graph and find the area under the curve by mid-ordinate rule

x	0	1	2	3	4	5	6
y	2	5	8	11	14	17	20

Question 4

a) (i) Find the diameter and circumference of a circle if an arc of length 5.67 cm subtends an angle of 2.15 radians
(ii) Prove the following identities

$$
\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1
$$

1.

$$
\frac{1+\tan ^{2} B}{1+\cot ^{2} B}=\tan ^{2} B
$$

2.

$$
\sqrt{\left[\frac{1-\cos C}{1+\cos C}\right]}=\operatorname{cosec} C-\cot C
$$

3.

$$
y=\sin A
$$

b) Plot the graph of from table of results

Question 5

$$
\angle c=69
$$

a) (i) Solve the triangle ABC given $\quad \mathrm{a}=16.40 \mathrm{~cm}$ and $\mathrm{b}=11.80$

A
(ii) Two sides of an acute angled triangular plot of ground are 48.0 m and 26.0 m respectively. If the area of the plot is $550 \mathrm{~m}^{2}$, find the length of the fluid side and the angles of the triangular plot
b) Express in partial fractions

$$
\frac{42 x+44}{(6 x+5)^{2}}
$$

i.

$$
\frac{18 x^{2}+3 x+6}{(3 x+1)}
$$

ii.

