TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING

SMA 2370: CALCULUS IV

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: JUNE 2015
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
\vec{F}=x z^{3} \hat{i}-2 x y z \hat{j}+2 y z \hat{k} \quad \text { curl } \vec{F}
$$

a) If
find at $(1,-1,1)$
(3 marks)

$$
f=f(x, y), x=r e^{\theta}, y=r e^{-\theta} \quad x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}
$$

b) If

$$
\text { express } \quad \text { in polar coordinates }
$$

(7 marks) $u=2 x^{3} y-3 y^{2} z$
c) Find the directional derivative of at $\mathrm{P}(1,2,-1)$ in a direction toward $\mathrm{Q}(3,-1,5)$ In what direction from P is the directional derivative a maximum and what is its maximum

$$
f(x, y)=y^{3} / x^{3}
$$

d) Expand in powers of $x-1$ and $y+1$ up to and including second degree terms

$$
\iiint_{v} 16 z d v \quad x^{2}+y^{2}+z^{2}=1
$$

e) Evaluate
where v is the upper half of the sphere
(7 marks)

Question Two

$$
f(x)=\sin x, 0<x<\pi
$$

a) Expand
in a Fourier cosine series
(7 marks)

$$
\vec{F}=2 y \hat{i}+3 x \hat{j}-z^{2} \hat{k}
$$

b) Verify stokes' theorem for
where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=9$ and C is its boundary

Question Three

a) Find the equation of the:
(i) Tangent line

$$
3 x^{2} y+y^{2} z=-2,2 x z-x^{2} y=3
$$

(ii) Normal plane to the curve at the point $(1,-1,1)$
(9 marks)
b) Find the mean value of $\sin m x \sin n x$ over

$$
x^{2}+y^{2}+z^{2}=a^{2} \quad \vec{F}=x \hat{i}+y \hat{j}+z \hat{k}
$$

c) Verify the divergence theorem for the sphere

Question Four

$$
\int_{(1,2)}^{(3,4)}\left[\left(6 x y^{2}-y^{3}\right) d x+\left(6 x^{2} y-3 x y^{2}\right) d y\right]
$$

a) Prove that hence or otherwise evaluate the integral is independent of the path joining $(1,2)$ and $(3,4)$. (6 marks)

$$
\int_{-\infty}^{\infty} \frac{x^{3}+x^{2}}{x^{6}+1} d x
$$

b) Test the convergence of
(6 marks)

$$
\left(x^{2}-x y+y^{2}\right) d s \quad x^{2}-x y+y^{2}=2
$$

c) Evaluate where S is the ellipse given by and using the

$$
x=u \sqrt{2}-v \sqrt{2 / 3}, y=u \sqrt{2}+v \sqrt{2 / 3}
$$

transformation

Question Five

a) The natural frequency of oscillation of an LBC series circuit is given by:

$$
f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}
$$

If L is increased by $1 \% \mathrm{C}$ decreased by 1%, show that the percentage

$$
\frac{R^{2} C}{4 L-R^{2} C}
$$

increase in f is approximately
(11 marks)

$$
f(x, y)=4+x^{3}+y^{3}-3 x y
$$

b) Find and classify all the critical points of

