

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BSME/BEME/BSCE/BEBC/BSEE/BMCS
SMA 2277/SMA 2270/ AMA 4209: CALCULUS III
\section*{END OF SEMESTER EXAMINATION}
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

a) Evaluate

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \quad \cos 45^{\circ}=\frac{1}{\sqrt{2}} \quad \sin 44^{\circ}
$$

b) Given and approximate using the Taylor's series expansion up to

$$
\frac{\partial f}{\partial r} \quad \frac{\partial f}{\partial s} \quad f(x, y, z)=x+2 y+z^{2} \quad x=\frac{r}{s}, y=r^{2}+\ln
$$

c) Determine and as functions of r and s if and S, while $z=2 r$
$0.080 \dot{0}$
d) Use geometric series to express
e) Evaluate the improper integral:

$$
\int_{0}^{2} \frac{d x}{\sqrt{4-x^{2}}}
$$

$$
r=1+\sin \theta \quad \theta=\frac{\pi}{4} \quad \theta=\frac{\pi}{4}
$$

f) Find the area enclosed by the curve between and

$$
\sum_{n=0}^{\infty} \frac{3}{2^{n}}
$$

g) Find the sum of the series

Question Two

$$
\int_{-\infty}^{\infty} x e^{-x^{2}} d x
$$

a) Find the value and state if this improper integral is convergent

$$
\int \cos ^{4} x d x
$$

b) Evaluate
c) Find a number C that satisfies the conclusion of the mean value theorem for:

$$
\begin{gathered}
f(x)=x+\frac{1}{x} \quad(1 / 2,2) \\
\text { on } \\
\frac{1}{2}-\frac{2}{2^{2}}+\frac{3}{2^{3}}-\frac{4}{2^{4}} \ldots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{2^{n}}
\end{gathered}
$$

d) Prove that

Question Three

a) Show that the series:

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

$$
f(x, y)=\frac{x y^{2}}{x^{2}+y^{4}} \quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

b) If
does exist

$$
z=x^{2}+y^{2}
$$

c) Find the area of the part of the paraboloid that lies under the plane $\mathrm{z}=9$
d) Evaluate the integral

$$
\begin{array}{r}
\int(x \ln x) d x \\
\int_{1}^{9}\left(\frac{2 t^{2}+t^{2} \sqrt{t}-1}{t^{2}}\right) d t
\end{array}
$$

e) Evaluate
(4 marks)

Question Four

$$
z=x^{2}+y^{2}
$$

a) Find the volume of the region that lies inside the region and below the plane $\mathrm{z}=16$
(8 marks)

$$
\left\{a_{n}\right\} \quad\left\{a_{n}\right\}=\frac{-2}{1}, \frac{8}{2}, \frac{-26}{6}, \frac{80}{24}, \frac{-242}{120}
$$

b) Find the $n^{\text {th }}$ term of a sequence whose first five term are
(3 marks)
c) State the Rolle's theorem hence verify using Rolle's theorem that its satisfied by the function $f(x)=5 x^{2}+7 x-6$

$$
\text { in }(-3,4)
$$

$$
f(x)=\ln x
$$

d) Find the Taylor's polynomial P_{4} for contained at $\mathrm{x}=1.1$

Question Five

$$
\int_{-2}^{3} \int_{0}^{\pi / 2} x \cos y d x d y
$$

a) Evaluate

$$
\begin{gathered}
x(t)=r \cos t \quad y(t)=r \sin t \underset{\text { and }}{ } \quad 0 \leq t \leq 2 \pi \\
\text { for } \mathbf{(4 ~ m a r k s)}
\end{gathered}
$$

$$
1<a<b \quad x \rightarrow \infty\left(a^{x}+b^{x}\right)^{1 / x}
$$

c) Given that find

$$
x^{2}+y^{2}=9
$$

d) Determine the surface are generated by revolving the circle to $\mathrm{x}=2$
about the x -axis from $\mathrm{x}=-2$
(5 marks)

