

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BSME/BEME/BSCE/BEBC/BSEE/BMCS

SMA 2277/SMA 2270/ AMA 4209: CALCULUS III

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$$

a) Evaluate

(3 marks)

$$\sin 45^\circ = \frac{1}{\sqrt{2}}$$
 $\cos 45^\circ = \frac{1}{\sqrt{2}}$
b) Given and approximate $\cos 44^\circ$ using the Taylor's series expansion up to (3 marks)

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial s}$$
Determine and as functions of r and s if $f(x, y, z) = x + 2y + z^2$

$$x = \frac{r}{s}, y = r^2 + \ln x$$
and S, while $z = 2r$
(4 marks)

as a ratio of two integers

0.0808

(4 marks)

e) Evaluate the improper integral:

d) Use geometric series to express

$$\int_0^2 \frac{dx}{\sqrt{4-x^2}}$$

(4 marks)

(6 marks)

(3 marks)

r = 1 + sin θ = $\frac{\pi}{4}$ $\theta = \frac{\pi}{4}$ **f)** Find the area enclosed by the curve between and

 $\sum_{n=0}^{\infty} \frac{3}{2^n}$

g) Find the sum of the series

Question Two

c)

к <i>е</i> ^{-х}	dx
	xe ^{-x}

a)	Find the value and state if this improper integral is convergent	(6 marks)
	$\int \cos^4 x dx$	
b)	Evaluate	(3 marks)

c) Find a number C that satisfies the conclusion of the mean value theorem for:

$$f(x) = x + \frac{1}{x} \qquad (\frac{1}{2}, 2)$$

on (4 marks)
$$\frac{1}{2} - \frac{2}{2^2} + \frac{3}{2^3} - \frac{4}{2^4} \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{2^n}$$

d) Prove that **Question Three**

converges absolutely (7 marks)

a) Show that the series:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
 is convergent and find its sum (4 marks)

$$f(x,y) = \frac{xy^2}{x^2 + y^2} \quad \lim_{(x,y) \to (0,0)} f(x,y)$$
b) If does exist (4 marks)

$$z = x^2 + y^2$$
c) Find the area of the part of the paraboloid that lies under the plane z = 9
(5 marks)
(3 marks)
(4 marks)
(4 marks)
(4 marks)
Question Four
a) Find the volume of the region that lies inside the region and below the plane z = 16
(8 marks)
(9 marks)
(9 marks)
(1 marks)
(9 marks)
(9 marks)
(1 marks)
(9 marks)
(1 marks)
(9 marks)
(9 marks)
(1 marks)
(2 marks)
(3 marks)
(3 marks)
(4 marks)
(4 marks)
(4 marks)
(5 marks)
(5 marks)
(6 marks)
(2 marks)
(5 marks)
(1 marks)
(2 marks)
(3 marks)
(3 marks)
(4 marks)
(4 marks)
(4 marks)
(4 marks)
(5 marks)
(5 marks)
(6 marks)
(2 marks)
(2 marks)
(3 marks)
(4 marks)
(4 marks)
(4 marks)
(5 marks)
(5 marks)
(5 marks)
(6 marks)
(6 marks)
(6 marks)
(7 marks)
(9 marks)

$$x^2 + y^2 = 9$$

d) Determine the surface are generated by revolving the circle to x = 2

about the x-axis from x = -2 (5 marks)