

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING
BACHELOR OF SCIENCE ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY
SMA 2173/AMA 4202: CALCULUS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Find the derivative of the following:
$y=\operatorname{coth} \sec x$
(i)

$$
y=\tanh ^{-1} 2 x
$$

(ii)

$$
\tanh ^{2} x+\operatorname{sech}^{2} x=1
$$

b) Show that
c) Evaluate:

$$
\int \frac{\sin \sqrt{x+1}}{\sqrt{x+1}} d x
$$

(i)

$$
\int \sec ^{3} x d x
$$

(ii)

$$
2 x^{2}-6 x+4 \quad a\left(u^{2} \pm A^{2}\right)
$$

d) Express in the form where a and A are real constants, hence find

$$
\begin{equation*}
\int \frac{2 d x}{2 x^{2}-6 x+4} \tag{5marks}
\end{equation*}
$$

e) Find the area of the region enclosed by the x-axis ad one arc of the curve:

$$
\begin{equation*}
y=\sin x \tag{3marks}
\end{equation*}
$$

Question Two

$$
y=9 \cosh x / 9
$$

a) Find the length of the curve between $x=1$ and $x=2$
(6 marks)
b) (i) Find the partial fraction for:

$$
\begin{equation*}
\frac{8 x^{2}-2 x+15}{\left(x^{2}+3\right)(x-1)} \tag{5marks}
\end{equation*}
$$

(ii) Use the results in (b) (i) above to evaluate:

$$
\int \frac{8 x^{2}-2 x+15}{\left(x^{2}+3\right)(x-1)} d x
$$

(4 marks)

$$
y=4 e^{x / 4}
$$

c) The area enclosed by the curve the x-axis and ordinates $x=-1$ and $x=3$ is rotated through 360° about the x-axis. Determine the volume generated

Question Three

$$
y=3 t^{2}, \quad x=3 t-t^{3}
$$

a) Find the surface area generated when the arc of the curve between $\mathrm{t}=0$ and $\mathrm{t}=1$ 2π
rotates about x axis through radians.
(8 marks)
$1.6 \cosh x+4.6 \sinh x=7.89$
b) Solve for x in
correct to 4 decimal places
(6 marks)
$\int_{3}^{4} \frac{x^{3}-2 x^{2}-4 x-4}{x^{2}+x-2} d x$
c) correct to 3 decimal places

Question Four

$$
x^{2} y^{3}-x^{4}-y^{5}-2 x y=-17
$$

a) Differentiate the function and determine its gradient at $(2,1)$

$$
\begin{equation*}
\sinh x=-3 / 4 \tag{4marks}
\end{equation*}
$$

b) Given that:

Find $\cosh x$

$$
\int_{-\pi / 2}^{\pi / 2} \sqrt{1-\sin ^{2} t} d t
$$

c) Evaluate
(4 marks)
d) $y=x^{3}+2 x-5 x-6$
d) Sketch the graph between $x=-3$ and $x=2$ and determine the area enclosed by the curve and the x -axis

$$
x \frac{d y}{d x}=y+1
$$

e) Evaluate:
(3 marks) Question Five

$$
\int_{1}^{3} \frac{3}{\sqrt{x}} d x
$$

a) Calculate the error in approximating \quad by Simpson's rule using $n=6$
b) Evaluate:

$$
\int_{0}^{\pi} \sin 5 x \cos 3 x d x
$$

$$
\operatorname{coth}^{-1} x=\frac{1}{2} \ln \frac{1+x}{x-1}
$$

c) Show that
hence solve cot $\mathrm{h}^{-1} 2.1$

