

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY BACHELOR OF STATISTICS & COMPUTER SCIENCE BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSSC/BSIT/BSC 2/BCE 14M, BSC 02)

AMA 4105/AMA 4205/SMA 2173/SMA 2102: CALCULUS II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Determine the following integrals:

(i)

$$\int_{1}^{2} 4e^{2x} dx$$
(i)

$$\int_{2}^{3} x(x-1)^{4} dx$$
(ii)

$$\int_{0}^{\frac{\pi}{2}} \sin x dx$$
(iii)
(iii)
(3 marks)
(3 marks)

© 2014 - Technical University of Mombasa

© 2014 - Technical University of Mombasa

- $y = \frac{1}{2}x^{2}$
- , the y axis and the straight line y = 2**b)** Find the area between the curve (4 marks) 11x + 12
 - $\overline{(2x+3)(x-3)}$
- c) Express in partial fractions

d) Use the mid ordinate rule with 4 intervals to evaluate

 $\int_{1}^{3} \frac{2}{\sqrt{x}} dx$

correct to 3 decimal places.

- (4 marks)
- is rotated one revolution about the x axis between the limits x = 1 and x = 4. e) The curve Determine the volume of solid for revolution produced (4 marks)
- **f)** Using integration by parts, find: $\int \tan^{-1} x dx$

 $y = x^2 + 4$

(4 marks) **g)** A particle moves along the y axis with the velocity v = 2t + 5, how far does the particle move between the times t = 0, t = 2(2 marks)

Question Two

a)	Determine by integration th	e area enclosed by the curves	$y = x^2 + 1$ an	y = 7 - xd	(8 marks)
		$\int \sqrt{a^2 - x^2} dx$			
b)	By making a suitable substi	tution, find			(8 marks)
	$\int \frac{4x-1}{(x+1)(x-2)} dx$				
c)	Find the u	ising partial fractions			(4 marks)
Question Three					
		$\int \sin^n x dx$			
a)	(i) Derive a reduction form	la for			(4 marks)
		$\int_{0}^{\frac{\pi}{2}} \sin^{8} 2$	xdx		
	(ii) Use the reduction formu	lla above to evaluate			(4 marks)
$\int_0^4 5x\sqrt{2x^2+4} dx$					
b)	Evaluate	taking positive values of root	s only		(5 marks)

(3 marks)

$$\int \frac{1}{\sqrt{1-x^2}} dx$$

c) Find **Question Four**

$$y = x^3 - x^2 - 6x$$

a) Sketch the curve between x = -2 and x = 3, hence determine the area between the **(8 marks)**

$$y = \int \left(r + \frac{1}{r}\right)^2 dr$$

b) If

, find the value of the arbitrary constant of integration if y = 1/3 when r = 1 (5 marks)

$$\frac{(3x-1)}{x^2 - x - 6} \int \frac{3x-1}{x^2 - x - 6} dx$$
in partial fraction and hence evaluate:

c) Express

Question Five

a) Evaluate:

 $\int \sin 2x \cos 3x \, dx$

(3 marks)

(7 marks)

 $y = x^{\frac{3}{2}}$

- b) Find the length of the arc of the curve from the point (1, 1) to the point (4, 8) **(6 marks)**
- c) Use trapezoidal rule to find an approximate value for taking n = 8

(5 marks)

d) The region R between curve $y = 2 - x^2$ and $y = x^2$ is rotated about x axis generating a solid S. Find the volume of S (6 marks)