

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY BACHELOR OF STATISTICS \& COMPUTER SCIENCE BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSSC/BSIT/BSC 2/BCE 14M, BSC 02)

AMA 4105/AMA 4205/SMA 2173/SMA 2102: CALCULUS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
a) Determine the following integrals:
$\int_{1}^{2} 4 e^{2 x} d x$
(i)

$$
\int_{2}^{3} x(x-1)^{4} d x
$$

(ii)

$$
\int_{0}^{\pi / 2} \sin x d x
$$

(iii)

$$
y=1 / 2^{x^{2}}
$$

b) Find the area between the curve , the y axis and the straight line $\mathrm{y}=2$
(4 marks)

$$
\frac{11 x+12}{(2 x+3)(x-3)}
$$

c) Express
in partial fractions
(3 marks)

$$
\int_{1}^{3} \frac{2}{\sqrt{x}} d x
$$

d) Use the mid ordinate rule with 4 intervals to evaluate

$$
y=x^{2}+4
$$

e) The curve is rotated one revolution about the x axis between the limits $\mathrm{x}=1$ and $\mathrm{x}=4$. Determine the volume of solid for revolution produced
f) Using integration by parts, find:

$$
\int \tan ^{-1} x d x
$$

g) A particle moves along the y axis with the velocity $v=2 t+5$, how far does the particle move between the times $t=0, t=2$
(2 marks)
Question Two

$$
\begin{equation*}
y=x^{2}+1 \quad y=7-x \tag{8marks}
\end{equation*}
$$

a) Determine by integration the area enclosed by the curves and
$\int \sqrt{a^{2}-x^{2}} d x$
b) By making a suitable substitution, find

$$
\begin{equation*}
\int \frac{4 x-1}{(x+1)(x-2)} d x \tag{8marks}
\end{equation*}
$$

c) Find the using partial fractions

Question Three

$$
\int \sin ^{n} x d x
$$

a) (i) Derive a reduction formula for
(ii) Use the reduction formula above to evaluate

$$
\begin{equation*}
\int_{0}^{4} 5 x \sqrt{2 x^{2}+4} d x \tag{4marks}
\end{equation*}
$$

b) Evaluate taking positive values of roots only

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x
$$

c) Find
(5 marks)
Question Four

$$
y=x^{3}-x^{2}-6 x
$$

a) Sketch the curve between $x=-2$ and $x=3$, hence determine the area between the curve and the x axis
(8 marks)

$$
y=\int\left(r+\frac{1}{r}\right)^{2} d r
$$

b) If
, find the value of the arbitrary constant of integration if $y=1 / 3$ when $r=1$
(5 marks)
$\frac{(3 x-1)}{x^{2}-x-6} \quad \int \frac{3 x-1}{x^{2}-x-6} d x$
c) Express in partial fraction and hence evaluate:
(7 marks)

Question Five

a) Evaluate:
$\int \sin 2 x \cos 3 x d x$
(3 marks)

$$
y=x^{3 / 2}
$$

b) Find the length of the arc of the curve from the point $(1,1)$ to the point $(4,8)$ (6 marks)

$$
\int_{1}^{3} x^{4} d x
$$

c) Use trapezoidal rule to find an approximate value for taking $\mathrm{n}=8$
d) The region R between curve $y=2-x^{2}$ and $y=x^{2}$ is rotated about x axis generating a solid S. Find the volume of S

