THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN TECHNOLOGY
DIPLOMA IN BUILDING \& CIVIL ENGINEERING
DIPLOMA IN ARCHITECTURE
CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Mathematical Table/Calculator

This paper consists of FIVE questions. Answer any THREE questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (20 marks)

$$
y=\sqrt{x}
$$

a) Working from the first principle, find the derivative of

$$
d y / d x
$$

b) Find given.

$$
y=\frac{t e^{3 t}}{3 \cos t}
$$

i)

$$
y=e^{t} \text { int } \cos t
$$

ii)

$$
y=5 \operatorname{cosec}\left(6 \sqrt{t+2 t^{2}}\right)
$$

iii)

$$
y=2 \sin ^{4} t
$$

iv)

Question Two (20 marks)

$$
y=x^{2}-x-2,
$$

a) A function is given as find:
i) The tangent at the point $(1,-2)$
ii) The normal at the point (1, -2)
b) Find:

$$
\frac{d y}{d x}, \quad y=\sec a x
$$

c) A rectangular area is formed having a perimeter of 50 cm . Determine the length and breath of the rectangle. If it is to enclose the maximum possible area.

Question Three (20 marks)

$$
\frac{d y}{d x}, \quad \frac{d y}{d x} \quad x=3
$$

a) Find and evaluate when

$$
y=\frac{(x-2)^{3 / 2}}{(2 x-1)(x+1)^{2}}
$$

b) Determine the turning point for the curve.

$$
y=\frac{x^{3}}{3}-\frac{x^{2}}{x}-6 x+5 / 3
$$

. Hence sketch the graph of the curve.

Question Four (20 marks)

$$
Z=4 x^{2} y^{2}-2 x^{3}+7 y^{2} ;
$$

a) Given find:

$$
\frac{\partial^{2} z}{\partial x \partial y}
$$

(iii)

$$
\frac{\partial 2 z}{\partial y \partial x}
$$

(iv)

$$
\frac{\partial^{2} z}{\partial x^{2}}
$$

i)

$$
\frac{\partial^{2} z}{\partial y^{2}}
$$

ii)
(6 marks)
b) A car starts from rest and moves a distance, S meters in t seconds where:

$$
S=\frac{1}{8} t^{3}+\frac{1}{2 t^{2}},
$$

find at $\mathrm{t}=5$ seconds.
(i) The velocity
(ii) The acceleration
c) Show the differential equation:

$$
\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+41 y=0 \quad y=2 e^{4 x} \cos 5 x
$$

Question Five (20 marks)

$$
\frac{d}{d x}\left(2 x^{3} y^{2}\right)
$$

a) Determine

$$
x=4(\theta-\sin \theta), y=4(1-\cos \theta)
$$

b) Given

Determine:

$$
\frac{d y}{d x}
$$

i)

$$
\frac{d^{2} y}{d x^{2}}
$$

ii)
$f(x)=2 x^{5}-4 x^{3}+3 x-5$
c) If
$f^{\prime}(x)$, find
i)
ii)

