

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE BACHELOR OF SCIENCE IN STATISTICS & COMPUTER SCIENCE BACHELOR OF SCIENCE IN INFORMATION COMMUNICATION TECHNOLOGY (BMCS/BSSC/BTIT)

AMA 4101/SMA 2102: CALCULUS I

END OF SEMESTER EXAMINATION

SERIES: APRIL 2015

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

Question One (Compulsory)

$$y = \frac{3}{X}$$

a) Differentiate

from first principles

(3 marks)

$$y = x^3$$

b) Determine the equation of the tangent and normal to the curve

at the point (1, 1)

(5 marks)

$$y = x^2 - 4x$$

c) Plot the graph of the curve and the x axis

between x = -2 and x = 3. Hence or otherwise find the area enclosed by **(6 marks)**

$$\frac{dy}{dx} \qquad \qquad y = 3\sin 3$$
$$x = 2\cos t$$

d) Find given that

(3 marks)

$$\lim_{x \to 1} \frac{2x^2 + 2x - 4}{x - 1} = 6$$

e) Prove that

(4 marks)

$$g(x) = \begin{cases} x^3, & x \ge 2\\ x^2 + 4, & x < 2 \end{cases}$$

f) Check for continuity at x = 2 for the function

(3 marks)

$$\frac{dy}{dx} \qquad 5y^2 + \sin y = x^2$$

g) By implicit differentiation, find

(3 marks)

h) The side of a square is 5cm. Find the increase in area of the square when the side expands by 0.01cm (3 marks)

Question Two

$$f(x) = x^3 + 3x^2 - 9x - 13$$

a) Use the second derivative test to find the local extrema of

(7 marks)

$$\frac{d}{dx}(\sin x) = \cos x$$

b) Show that

using first principles

(6 marks)

c) Evaluate:

$$\lim_{x\to 2} \left(2x^2 - x + 1\right)$$

(i)

$$\lim_{x\to\infty}\frac{6x-1}{2x+1}$$

(ii)

$$\lim_{x\to -3} \frac{3x+9}{x^2-9}$$

(iii)

marks)

(7

Question Three

a) Given and $g(x) = 1 + x^2 \qquad (f \circ g)(x) \qquad (g \circ f)(x)$ and

(6 marks)

$$y = -x^3 + 6x^2$$

b) Find the points on the graph

at which the tangent has slope 6

(8 marks)

- c) It is estimated that x months from now, the population of a certain community will be $P(x) = x^2 + 20x + 8000$
 - (i) At what rate will the population be changing with respect to time 15 months from now

(3 marks)

(ii) By how much will the population actively change during the 16th month

(3 marks)

Question Four

a) Evaluate the following limits:

$$\lim_{x\to 1} \frac{\sqrt{x-1}}{x-1}$$
(i)
$$\lim_{x\to \infty} \frac{x^2}{1+x+2x^2}$$
(ii)
(4 marks)
(3 marks)

$$y = \frac{x^2 \sin x}{\cos 2x}$$

- b) Find the derivative of the function using logarithmic differentiation (5 marks)
- c) An object travels in such a way that distance S (in metres) from the starting point is a function of time $s(t) = 10t^2$

t (in hours) as follows

- (i) Find the average velocity between the time t = 2 and t = 5
 (ii) Find the instantaneous velocity when t = 4
 (3 marks)
 (3 marks)
- (iii) Find the installations velocity when t = 4 (3 marks) (3 marks)

Question Five

a) Given the parametric equation of a function

$$y = 3\sin\theta - \sin^3\theta$$

$$x = \cos^{3} \theta \qquad \frac{dy}{dx} \qquad \frac{d^{2}y}{dx^{2}}$$
evaluate and (8 marks)

b) Use a tangent line approximation to estimate the value of **(6 marks)**

$$\frac{d}{dx}\left(\sin^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$

c) Prove that (6 marks)