

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTAP/BTRE)

AMA 4109: CALCULUS FOR TECHNOLOGISTS I

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Mathematical tables

Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

 $x^2 + y^2 = 25$

$$\lim_{x \to \infty} \left\{ \frac{3x^2 - x - 2}{5x^2 + 4x + 1} \right\}$$

a) Evaluate

 $f(x) = x(x-3)^2$

(4 marks)

$$f(x) = x(x)$$

(5 marks)

b) Sketch the graph of the function f(x) given by

dy/dy

$$x^2 + y^2 = 25$$

- $\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$
- **d)** Prove that if f and g are both differentiable then
 - $\int_{0}^{1} \int_{0}^{x^{2}} \int_{xy}^{x+y} (xyz) dz dy dx$

 $\int_{1}^{2}\int_{3}^{4}(y-x)dydx$

e) Evaluate the triple integral:

 $z = 2x^2 - 3xy + 4y^2$ $Z_{xy} = Z_{yx}$. Show that **f)** If

Question Two

$\lim_{x\to 0}\left\{\frac{e^{2x}-1}{x}\right\}$

a) Evaluate

b) Work out the double integral:

c) Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm³/s. How fast is the radius r of the balloon increasing when the diameter is 50cm? (7 marks)

f(x) =
$$5 - \frac{4}{x}$$
,
d) Given that find C in the open interval (1, 4) using the mean value theorem

Question Three

$$f(x) = x^3 - x$$
a) If , find a formula for f'(x) by first principle (4 marks)

b) Differentiate each of the following:

(1, 4) is revolved about the x-axis

$y = \frac{1}{x^3}$	
(i)	(1 marks)
$y = e^x - x$	
(ii)	(2 marks)
$y = \frac{\sec x}{\cos x}$	
$y = \frac{1}{1 + \tan x}$	
(iii)	(3 marks)

 $v = \sqrt{x}$ c) Find the volume of a solid that is obtained when the region under the curve over the interval (5 marks)

$$v = x^4 - 6x^2 + 4$$

d) Find the point on the curve where the tangent line is horizontal (5 marks)

(4 marks)

(5 marks)

(6 marks)

(5 marks)

(4 marks)

(4 marks)

Question Four

- a) State THREE ways through which a function fails to be differentiable (3 marks)
- b) Determine the integrals given by:

$$\int \frac{1}{x^2} dx$$
(i)

$$\int \cos 3x \, dx$$
(ii)

$$\int_0^3 (x^3 - 6x) \, dx$$
(iii)
(3 marks)
(3 marks)

- **c)** Find the area of the region bounded by y = x + 6 and below by $y = x^2$ and on the sides by x = 0 and x = 2 (5 marks)
- $x = r(\theta \sin \theta)$ $y = r(s \cos \theta)$ $0 \le \theta \le 2\pi$ **d)** Find the length of one arch of the cycloid

(6 marks)

(4 marks)

with

Question Five

$$y = x^4 - 4x^3$$

- a) Discuss the stationary points in the curve
- b) Suppose an area of farmland along a straight stone wall is to be fenced. There are 400m of fencing available. What is the greatest rectangular area that can be enclosed? Note: Part of stone does not need fencing. (4 marks)
- a(t) = 6t + 4c) A particle moves in a straight line and has acceleration given by . Its initial velocity is V(o) = -6cm/sand in initial displacement in s(o) = 9cm. Find its position function s(t)(5 marks) d) The position of a particle moving along the x-axis is given by the function $x(t) = 3t^4 - 32t^3 + 114t^2 - 144t + 40, \quad 0 \le t \le 5$ where x is measured in metres and t measured in seconds. (i) What are its velocity and speed at $t = \frac{1}{2}$ seconds (2 marks) (ii) When is its acceleration increasing (2 marks) Is the particle speeding up or slowing down at t = 2 seconds? (iii) (2 marks)
 - (iv) What is the maximum distance the particle ever attains from the origin (1 mark)