TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTAP/BTRE)

AMA 4109: CALCULUS FOR TECHNOLOGISTS I

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\lim _{x \rightarrow \infty}\left\{\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}\right\}
$$

a) Evaluate
b) Sketch the graph of the function $\mathrm{f}(\mathrm{x})$ given by

$$
x^{2}+y^{2}=25 \quad d y / d x \quad x^{2}+y^{2}=25
$$

c) If find hence determine the equation of the tangent to the circle point $(3,4)$

$$
\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}[g(x)]+g(x) \frac{d}{d x}[f(x)]
$$

d) Prove that if f and g are both differentiable then
(5 marks)

$$
\int_{0}^{1} \int_{0}^{x^{2}} \int_{x y}^{x+y}(x y z) d z d y d x
$$

e) Evaluate the triple integral:

$$
z=2 x^{2}-3 x y+4 y^{2} \quad Z_{x y}=Z_{y x}
$$

f) If . Show that
(6 marks)
Question Two

$$
\lim _{x \rightarrow 0}\left\{\frac{e^{2 x}-1}{x}\right\}
$$

a) Evaluate

$$
\int_{1}^{2} \int_{3}^{4}(y-x) d y d x
$$

b) Work out the double integral:
c) Air is being pumped into a spherical balloon so that its volume increases at a rate of $100 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the radius r of the balloon increasing when the diameter is 50 cm ?

$$
f(x)=5-\frac{4}{x}
$$

d) Given that find C in the open interval $(1,4)$ using the mean value theorem
(4 marks)

Question Three

$$
f(x)=x^{3}-x
$$

a) If , find a formula for $\mathrm{f}^{\prime}(\mathrm{x})$ by first principle
(4 marks)
b) Differentiate each of the following:

$$
y=\frac{1}{x^{3}}
$$

(i)

$$
y=e^{x}-x
$$

(ii)

$$
\begin{equation*}
y=\frac{\sec x}{1+\tan x} \tag{iii}
\end{equation*}
$$

$$
y=\sqrt{x}
$$

c) Find the volume of a solid that is obtained when the region under the curve $(1,4)$ is revolved about the x-axis over the interval

$$
y=x^{4}-6 x^{2}+4
$$

d) Find the point on the curve where the tangent line is horizontal

Question Four

a) State THREE ways through which a function fails to be differentiable
b) Determine the integrals given by:

$$
\int \frac{1}{x^{2}} d x
$$

(i)
(2 marks) $\int \cos 3 x d x$
(ii)

$$
\begin{equation*}
\int_{0}^{3}\left(x^{3}-6 x\right) d x \tag{1mark}
\end{equation*}
$$

(iii)
c) Find the area of the region bounded by $y=x+6$ and below by $y=x^{2}$ and on the sides by $x=0$ and x $=2$
(5 marks)

$$
x=r(\theta-\sin \theta) \quad y=r(s-\cos \theta) \quad 0 \leq \theta \leq 2 \pi
$$

d) Find the length of one arch of the cycloid with

Question Five

$$
y=x^{4}-4 x^{3}
$$

a) Discuss the stationary points in the curve
(4 marks)
b) Suppose an area of farmland along a straight stone wall is to be fenced. There are 400 m of fencing available. What is the greatest rectangular area that can be enclosed? Note: Part of stone does not need fencing.
(4 marks)

$$
a(t)=6 t+4
$$

c) A particle moves in a straight line and has acceleration given by . Its initial velocity is $V(o)=-6 \mathrm{~cm} / \mathrm{s}$
and in initial displacement in $\mathrm{s}(\mathrm{o})=9 \mathrm{~cm}$. Find its position function $\mathrm{s}(\mathrm{t})$
(5 marks)
d) The position of a particle moving along the x-axis is given by the function $x(t)=3 t^{4}-32 t^{3}+114 t^{2}-144 t+40, \quad 0 \leq t \leq 5$
where x is measured in metres and t measured in seconds.
(i) What are its velocity and speed at $t=1 / 2$ seconds
(ii) When is its acceleration increasing
(iii) Is the particle speeding up or slowing down at $\mathrm{t}=2$ seconds?
(iv) What is the maximum distance the particle ever attains from the origin
(1 mark)

