TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS<br>DIPLOMA IN PHARMACEUTICAL TECHNOLOGY

AMA 2103: CALCULUS FOR SCIENCES
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

## Question One (Compulsory)

$$
f(x)=x^{2}+5
$$

a) Given the function . Find:

$$
f(5)
$$

(i)

$$
f(-15)
$$

(ii)

$$
f^{-1}(x)
$$

(iii)
b) Use the quadratic formula to solve

$$
A=\left(\begin{array}{ll}
3 & 2  \tag{2marks}\\
4 & 1
\end{array}\right) \quad A^{2}=A+B
$$

c) Give find $B$ given

$$
\begin{equation*}
S=3 t^{3}+2 t^{2}+t+5 \tag{2marks}
\end{equation*}
$$

d) Given the distance covered by a particle in time $t$, find:
(i) The velocity at $t=5$ seconds
(2 marks)
(ii) The acceleration at $\mathrm{t}=10$ seconds

$$
\int_{0}^{2} x^{8} d x
$$

e) Find

$$
\alpha=\sqrt{\frac{2 v e}{m}}
$$

f) The velocity of an electron is given by make $m$ the subject of the equation ( 2 marks) $y=x^{2}+2$
g) Differentiate from first principles given

## Question Two

$$
\begin{aligned}
& 3 x+y=5 \\
& x+2 y=2
\end{aligned}
$$

a) Solve
by elimination

$$
y=\left(x^{2}+5\right)^{7}
$$

b) Use the chain rule to differentiate

$$
\int_{0}^{5} x e^{x} d x
$$

c) Evaluate
d) Find the equation of the normal to the curve $y=x^{2}$ at $x=5$

## Question Three

a) Differentiate implicitly given:

$$
x^{3}+4 x y^{3}-y^{5}=7
$$

(i)
(2 marks)

$$
x^{2}+y^{2} x=25
$$

(ii)
(2 marks)
b) Find $99^{2}-1$ by using the difference of two squares

$$
\begin{equation*}
y=x^{2}-x+2, x=-1 \tag{1mark}
\end{equation*}
$$

c) Find the area under the curve and $x=2$
d) Given the points $A(3,7)$ and $B(-4,9)$ Find:
(i) The gradient of the line segment
(ii) The equation of the line AB

$$
\overline{A B}
$$

(iii) The coordinates of the midpoint of the line segment
(iv)The $A B$
(iv)The length of the line segment

## Question Four

$$
y=x^{2}
$$

a) Given the curve find:
(i) The volume generated by rotating the area under the curve the x -axis, $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{s}$ through $360^{\circ}$ about the $x$-axis
(ii) The surface area of the solid generated

$$
\begin{equation*}
y=x^{3}+2 x \tag{2marks}
\end{equation*}
$$

b) Find the equation of the tangent to the curve at $\mathrm{x}=2$

$$
3^{x}=27
$$

c) Solve
d) Find the exact area shown below


## Question Five

a) Find:

$$
\int \sin x d x
$$

(i)
(2 marks)
(2 marks)

$$
y=\frac{e^{r}}{\cos x}
$$

b) Use the quotient rule to differentiate
(2 marks)

$$
A=\left(\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right)
$$

c) Find the inverse of and hence use it to determine $\mathrm{AA}^{-1}$

$$
y=x^{3}-6 x+2
$$

d) Find the turning points of the curve

