

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN FOOD QUALITY BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY (BSFQ 14/BTAC 14)

AMA 4105: CALCULUS FOR SCIENCE

END OF SEMESTER EXAMINATION **SERIES: APRIL 2015** TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables _
 - Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

$$g: \mathfrak{R} \to \mathfrak{R}$$

a) Let be defined by

$$g(x) = \begin{cases} 2x^6 - 4 & x \ge 1 \\ 3x + 3 & x < 1 \end{cases}$$
Find: (i) g(2)
(ii) g(0)
(iii) g(-3)

marks)

(3

(iii)

marks)

 $x^{3} - 1$

Question Two

	$y = x^3 - 4x + 2$	
a)	(i) Identify the maximum and minimum values of the function	(8 marks)

(ii) Sketch the graph of the function in (i) clearly showing the y-intercept and turning points

b) Viewed through a microscope a bacterium is seen to move in accordance with the equation

$$S = \left(4t + 6t^2\right) \times 10^{-6}$$

Find:

(i) The distance travelled between 0 and 45 seconds	(3 marks)
(ii) The velocity after 30 seconds	(3 marks)
(iii) The acceleration after 30 seconds	(1
mark)	

Question Three

$$\int_{1}^{2} x \ln x dx$$

a) Evaluate correct to 4 significant figures

b) A gas expands according to the law PV = constant (7 marks)

(2

 $\int_{v_1}^{v_2} P dv$

When the volume is $3m^3$ the pressure is 150kPa given that the work done work done as the gas expands from $2m^3$ to $6m^3$

- c) Find the equation of:
 - (i) Tangent
 - (ii) Normal

 $y = 1 + x - x^2$ to the curve at (-2, -5)

Question Four

a) Determine the integral:

$$\int \frac{2x^2 - 9x - 35}{(x+1)(x-2)(x+3)} dx$$

b) (i) Sketch the area enclosed by the curve

points and intercepts on your sketch

and the x-axis, clearly indicating the turning (7 marks) (3 marks)

- (ii) Find the area in (i) **Question Five**
- a) Differentiate w.r.t x if:
 - x tan $y = y^{3} \cos x$ (i) $x = t^{2}, y = t - 2t^{2}, at t = 1$ (ii) (4 marks)

 $y = 4x - x^2$

b) Find the length of the curve

between x = 0 and x = 4

 $y^{2} = x^{3}$

(6 marks)

$$y = 3e^{\frac{t}{4}}$$

c) Determine the area bounded by the curve orrect to 4 significant figures
 , the t –axis and the ordinates at t = -1 and t = 4 (4 marks)

, determine the

(4 marks) (3 marks)

(6 marks)

(10 marks)