THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF B.TECH IN INDUSTRIAL CHEMISTRY

APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011
TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown This paper consists of THREE printed pages

Take \quad Acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\text { Permeability of free space, } \mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}
$$

Permittivity of free space, $\varepsilon_{0}=8.85 \times 10^{-12} \quad \mathrm{C} /\left(\mathrm{Nm}^{2}\right)$

SECTION A (Compulsory)

QUESTION ONE (30 Marks)
a) Below is an equation for real gases
$\left(P+\frac{a}{V^{2}}\right)=\frac{R T}{(V-b)}$
where V - volume, T - temperature, R - universal molar gas constant, a and b are constants. Find the dimensions of a and b
b) State the Newton's first law of motion
c) A force A acting along the x-axis has a magnitude of 10 N . If another force B equal to 8 N makes an angle of 120° with force A, find their resultant force. Sketch the three forces. marks)
d) A block of mass m is supported by an inextensible string from the ceiling. Another string is attached to the bottom of the block. Explain what would happen when : -
(i) The lower string is given a sudden jack
(ii) The lower string is pulled steadily
e) Show that the number of nuclides N yet to undergo radioactive decay at any time t is given by $N=N_{0} e^{-\lambda t}$ where N_{o} is the initial number of nuclides at time $t=0$ and \square is the decay constant. (5 marks)
f) A cubical box of identical surfaces is placed in a uniform electric field \mathbf{E}. What is the net flux on the box
g) Two isolated metal spheres of radii r_{1} and r_{2} are connected by a long conductor. Find the ratio their final charge densities σ_{1} and σ_{2} respectively marks)

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 Marks)
a) (i) Distinguish static friction and kinetic friction
(ii) Explain why the coefficient of static friction μ_{s} is always greater than the coefficient of kinetic friction μ_{k}
(iii) A block is resting on an inclined plane that makes an angle Θ with the horizontal. As the angle of incline is increased, it was found that the block just begins to slide down the plane at an angle Θ_{s}, show that $\mu s=\tan \theta_{s}$
marks)
b) The figure below shows two masses M_{1} and M_{2} attached to each other using an inextensible string of negligible mass.

If the masses accelerate over a frictionless table at $a \mathrm{~m} / \mathrm{s}^{2}$ when the tension on the string is T, show that : - (i) $a=\frac{M_{1}}{M_{1}+M_{2}} g$
(ii) $T=\frac{M_{1} M_{2}}{M_{1}+M_{2}} g$
(4 marks)

QUESTION THREE (20 Marks)

a) Use the Gauss law to derive the Coulomb law
(6 marks)
b) Determine the electric potential for all the points at a distance r on the axis of a uniformly charged circular disc of radius a whose surface charge density is σ. Show that such a disc behaves as a point charge when $\mathrm{r} a$.
(14 marks)

QUESTION FOUR (20 Marks)

Three charges are placed in free space such that q_{2} is 5 cm from q_{1} along the positive xaxis. The line joining q_{1} to q_{3} makes an angle -30° with the positive y-axis when the distance between q_{2} and q_{3} is 5 cm . Given that $q_{1}=-3 \times 10^{-7} \mathrm{C}, \quad q_{2}=4 \times 10^{-7} \mathrm{C}$ and

$$
q_{2}=-2 \times 10^{-7} C \text {, find : - }
$$

(a) The resultant force on q_{1} and its direction (7 marks)
(b) The electric field at O , the centre of the configuration
(c) The electric potential at O
(d) The net electrical potential energy due to the configuration

QUESTION FIVE (20 Marks)

a) If the potential at a certain region is given by $V=6 x^{2} y-40 x z^{2}-20$, find the components of the electric field \mathbf{E} at the point $(1,0,2)$ metres
b) Derive the expression for the equivalent capacitance of three capacitors in series
(6 marks)
c) The circuit below is connected to a 2 V battery as shown

i) Determine the equivalent resistance in the circuit
ii) Determine the potential drop in the 3Ω resistor
iii) Calculate the current through the 5Ω resistor
(3 marks)
iv) Find the power dissipated at the 10Ω resistor
(2 marks)
(2 marks)
(2 marks)

