

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF B.TECH IN INDUSTRIAL CHEMISTRY

APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2011 TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination - *Answer booklet*

This paper consists of **FIVE** questions

Answer Question **ONE** (**Compulsory**) from **SECTION A** and any other **TWO** questions from **SECTION B**

Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

TakeAcceleration due to gravity, $g = 10 \text{ m/s}^2$ Permeability of free space, $\mu_0 = 4 \quad \pi \times 10^{-7} \quad \text{NA}^{-2}$ Permittivity of free space, $\varepsilon_0 = 8.85 \quad \times 10^{-12} \quad \text{C/(Nm}^2)$

SECTION A (Compulsory)

QUESTION ONE (30 Marks)

a) Below is an equation for real gases

$$\left(P+\frac{a}{V^2}\right) = \frac{RT}{(V-b)}$$

where *V* - volume, *T* - temperature, R – universal molar gas constant, *a* and *b* are constants. Find the dimensions of *a* and *b* (5 marks)

b) State the Newton's first law of motion

(2 marks)

c) A force A acting along the x-axis has a magnitude of 10N. If another force B equal to 8N makes an angle of 120^o with force A, find their resultant force. Sketch the three forces.

marks)

- d) A block of mass m is supported by an inextensible string from the ceiling. Another string is attached to the bottom of the block. Explain what would happen when : -
 - (i) The lower string is given a sudden jack
 - (ii) The lower string is pulled steadily
- e) Show that the number of nuclides N yet to undergo radioactive decay at any time t is given by $N = N_0 e^{-\lambda t}$ where N_o is the initial number of nuclides at time t=0 and [] is the decay constant. (5 marks)
- f) A cubical box of identical surfaces is placed in a uniform electric field E. What is the net flux on the box (3 marks)
- g) Two isolated metal spheres of radii r_1 and r_2 are connected by a long conductor. Find the ratio their final charge densities σ_1 and σ_2 respectively (6 marks)

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 Marks)

- a) (i) Distinguish static friction and kinetic friction (2 marks)
 - (ii) Explain why the coefficient of static friction μ_s is always greater than the coefficient of kinetic friction μ_k (3 marks)
 - (iii) A block is resting on an inclined plane that makes an angle Θ with the horizontal. As the angle of incline is increased, it was found that the block just begins to slide down the plane at an angle Θ_s , show that $\mu s = \tan \theta_s$ (5 marks)
- b) The figure below shows two masses M₁ and M₂ attached to each other using an inextensible string of negligible mass.

(5

If the masses accelerate over a frictionless table at $a \text{ m/s}^2$ when the tension on the string is

T, show that :- (i)
$$a = \frac{M_1}{M_1 + M_2} g$$
 (6 marks)

(ii)
$$T = \frac{M_1 M_2}{M_1 + M_2} g$$
 (4 marks)

QUESTION THREE (20 Marks)

- a) Use the Gauss law to derive the Coulomb law
- b) Determine the electric potential for all the points at a distance r on the axis of a uniformly charged circular disc of radius *a* whose surface charge density is σ. Show that such a disc behaves as a point charge when r *a*. (14 marks)

QUESTION FOUR (20 Marks)

Three charges are placed in free space such that q_2 is 5 cm from q_1 along the positive xaxis. The line joining q_1 to q_3 makes an angle -30° with the positive y-axis when the distance between q_2 and q_3 is 5cm. Given that $q_1 = -3 \times 10^{-7}C$, $q_2 = 4 \times 10^{-7}C$ and $q_2 = -2 \times 10^{-7}C$, find : -

	(a) The resultant force on q_1 and its direction	(7 marks)
	(b) The electric field at O, the centre of the configuration	(7 marks)
	(c) The electric potential at O	(3 marks)
	(d) The net electrical potential energy due to the configuration	(3 marks)
QUESTION FIVE (20 Marks)		
a)	If the potential at a certain region is given by $V=6x^2y-40xz^2-20$, find	the
	components of the electric field E at the point (1,0,2) metres	(6 marks)
b)	Derive the expression for the equivalent capacitance of three capacitors in set	ries
c)	The circuit below is connected to a 2V battery as shown	(6 marks)

(6 marks)

- i) Determine the equivalent resistance in the circuit
- ii) Determine the potential drop in the 3Ω resistor
- iii) Calculate the current through the 5 Ω resistor
- iv) Find the power dissipated at the 10 Ω resistor

- (3 marks) (2 marks)
- (2 marks)
- (2 marks)