

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence)

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR: BACHELOR OF TECHNOLOGY IN ANALYTICAL & INDUSTRIAL CHEMISTRY

APS 4103: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other THREE questions Maximum marks for each part of a question are as shown This paper consists of FOUR printed pages

Take:

$$\varepsilon_o = 8.85 \times 10^{-12} Fm^{-1}$$

$$K = 1/(4\pi\varepsilon_o) = 9 \times 10^9 Nm^2 / C^2$$

$$q_e = 1.6 \times 10^{-19} C$$
Electron Charge

Electron Charge, Mass of electron, Me = 9.11 x 10-31 kg

 $\mu_o = 4\pi \times 10^{-7} \, Tm \, / \, A$

Permeability constant, =

Proton Mass, mp = $17 \times 10^{-27} \text{ kg}$					
$1\mu C$ = 10 ⁻⁶ C					
$1nC = 10^{-9}C$					
$1eV = 1.6 \times 10^{-19}$					
Acceleration Due to gravity, $g = 9.8 \text{ms}^{-2}$ Boltzmann Constant K = 1.38×10^{-23}					
Jmol ⁻¹ k ⁻¹					
Universal constant G = 6.673 X 10 ⁻¹¹ Nm ² kg ⁻² Question One (Compulsory)					
a) (i) Differentiate between velocity and speed.	(1 marks)				
(ii) An object is dropped into a well and hits the water 2 seconds after being r is the well?	eleased. How deep (3 marks)				
(iii) If the velocity of a particle changes by the same amount for each similar can you say about the acceleration?					
b) Find the equivalent resistance of the following combinations of resistors: Ω , 2Ω 5Ω					
(i) Parallel arrangement of 3 and resistor. $3\Omega 4\Omega \qquad 5\Omega$	(2 marks)				
(ii) Series combination of and resistors in parallel with a resistor.	(2 marks)				
c) Explain the term half life as used in discharging of a capacitor.	(1 marks)				
d) (i) Show that for a linear conductor of electric current, resistivity ρ is given by: $\rho = \frac{RA}{L}$					
where R is the resistance and L is the length of the conductor. (ii) State Kirchhoff's Laws	(3 marks) (2 marks)				
(iii) Distinguish between Ohmic and Non Ohmic conductors.	(2 marks)				
μF μF					
 e) A 2.00 and a 4.00 capacitors are connected to a 60.0V battery. How much charge is supplied by the battery in charging the capacitors when the wiring is in series. (3 marks) 					
f) (i) State Ohm's Law	(1 mark)				
(iii) Show that the effective resistance RT of three resistors connected in paralle $RT = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3}$	l is given as:				
$\mathbf{K}_1\mathbf{K}_2 + \mathbf{K}_2\mathbf{K}_3 + \mathbf{K}_1\mathbf{K}_3$	(4 marks)				
Question Two					
a) What do you understand by the term capacitance?	(2 marks)				
© 2012 The Members Polytechnic University College	Dage 2				

© 2012 – The Mombasa Polytechnic University College

Page 2

$C1 = 2\mu F$, $C2 = C3 = 0.5\mu F$ V = 6V and

b) In the circuit below,

Figure 1

	(i) (ii)	Compute the charge in each capacitor. Calculate the potential difference across each capacitor.	(3 marks) (4 marks)	
c)	A 10	 <i>iF</i> capacitor is charged for a 30V supply and then connected across an usor; calculate the: Final potential difference across the combination. Initial and final energies. 		μF
-	estion '		(4 marks)	
b)	The he (i) (ii)	ating element of a heater is rated at 1KW when operating at 240V. Determine the current through it under normal conditions. What would be its power consumption if the potential difference drops to 120	(3 marks) V? (4 marks)	

Find the equivalent resistance of the combination of resistors in the circuit. Compute current I if the applied voltage is 6V. (7 marks)

Question Four

- **a)** Define the following terms:
 - (i) Distance
 - (ii) Displacement
 - (iii) Acceleration
 - (iv) Friction
- **b)** Derive Newton's second law
- c) A 600N object is to be given an acceleration of 0.7ms⁻². How large an unbalanced force must act upon it? (3 marks)
- d) Two masses of 0.5kg and 0.25kg are connected by a light inextensible string, which passes over a smooth light pulley. If the system is released form rest with the string taut, find the acceleration of each mass and the distance travelled in 1 second from rest. (5 marks)

Question Five

- a) State Coulomb's law for the electrostatic force between two point charges. (1 mark)
- **b)** Three positive charges lie along the same line as shown. Derive an expression for the force acting on Q2.

(1 mark)

(1 mark)

(1 mark) (1 mark)

(3 marks)

Figure 3

c) The charges below are placed at the corners of an equilateral triangle of side a

Figure 4

Show that the force experienced by charge Q1 is given by the expression:

$$F = \frac{\sqrt{3} KQ^2}{a^2}$$

(5 marks)

d) Consider two charges Q_1 and Q_2 separated initially by a distance r^1 . If charge Q_2 is moved towards Q_1 such that the new separation distance r, show that the work done in moving the charge Q_2 is given by:

$$W = \frac{Q1 \ Q2}{4\pi\varepsilon_o} \left[\frac{1}{r} - \frac{1}{r'} \right]$$

(5 marks)