

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPOMA IN COMPUTER SCIENCE & INFORMATION TECHNOLOGY (DCIT J13)

APS 2130: FUNDAMENTALS OF PHYSICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions in TWO sections A & B Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

- **a)** (i) State Newton's first Law of motion
 - (ii) Show that F = ma, when F is the force applied, m is the mass of the object and a the acceleration

(iii) A car of mass 1000kg is accelerating at 2ms⁻². If the resistance to motion is 1000N, what is the force due to the engine? (4 marks)

b) (i) Explain how temperature affects the resistance of a conductor. (2 marks)

 $(ii) \ A \ 4 \ and \ 6 \ connected in parallel across a 6.0 volt battery having internal <math display="inline">\Omega$ resistance of 0.6 .

- (i) Draw the circuit diagram
- (ii) What is the total current in the circuit
- c) (i) Derive the dimensions of velocity (2 marks)
 (ii) Use dimensional analysis to check the validity of the second equation of uniformly accelerated motion. (3 marks)

$$S = ut + \frac{1}{2}at^{2}$$

- d) A wire length L = 2.35m and diameter d = 1.63mm carries a current I of 1.24A. The wire dissipates electrical energy at the rate of P of 48.5mW. Calculate:
 - (i)The resistance of the wire(2 marks)(ii)The resistivity of the wire(3 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

- a) (i) Define the following terms:
 - (i) Displacement
 (ii) Acceleration
 (2 marks)
 (iii) Derive the three equations of uniformly accelerated motion
 (8 marks)
- **b)** (i) Explain how the electric field intensity is indicated in the electric field patterns. **(4 marks)**

(3 marks) (5 marks)

(1 mark)

μC

placed in an electric field experiences a force of 0.08N. What is the magnitude (ii) A charge of 2 of the electric field intensity? (4 marks)

c) Give TWO uses of reflecting surfaces

Question Three

a) Radio transmission is possible with certain spectrum of waves that travel through space at 3 x 10⁸m/s.

	(i) (ii) (iii)	State T V electroma What is t List FIV	WO agneti he fre E proj	differer c spectr quency perties c	nces rum. of th of ele	between e radio tra ctromagn	radio ansmiss etic wav	waves ion of w ves	and aveler	other ngth 15	types 600m?	of	radiation (2 marks (3 marks (5 marks	in ti 5) 5) 5)	he		
b)	 A graph of input voltage against time (seconds) for an electronic signal: (i) In analogue system (ii) In digital system 												(2 marks) (2 marks)				
c)	Speech signals in the frequency range 300Hz to 3400Hz are used to amplitude r wave of frequency 200.0 kHz. Determine:(i) The bandwidth(ii) The frequency range of the lower and upper side bands													nodulate a carrier (3 marks) (3 marks)			
Qu	estion 1	Four															
a)	Define the following terms: (i) Energy (ii) Power												(2 marks	6)			
b)	What power is developed when a machine lifts a mass of 200kg vertically up to hei a minute												ght of 20m in half (6 marks)				
c)	Ω Ω Two resistors of 1200 and 800 are connected in series with a battery of e.m.f 2 internal resistance. What is the p.d. across each resistor?													24V and negligible (6 marks)			
d)	(i) State the law of conservation of energy(ii) Describe the energy transformation in hydro-electric power stations.												(2 marks) (4 marks)				
Qu	estion	Five															
a)	State Coulomb's Law										(2 marks)						

(2 marks)

μF

b) A capacitor C of 0.1 is used on the main frequency of 50Hz. Calculate the reactance.

(4 marks)

- **c)** A car moving with a velocity of 10ms⁻¹ accelerates uniformly at 2ms⁻² until it reaches a velocity of 15ms⁻¹. Calculate:
 - (i) The time taken
 (ii) The distance travelled during the acceleration
 (iii) The velocity reached 100m from the place where the acceleration began
 (2 marks)
 (3 marks)
- d) State **THREE** uses of Lasers

(3 marks)