THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION \& COMMUNICATION TECHNOLOGY DICT2K11/DICT11M

APS 2103: PHYSICS

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

Answer question ONE (COMPULSORY) and any other TWO questions

This paper consists of THREE printed pages

Question 1 (Compulsory)

a) State the Kirchhoff Law on
i) Current
ii) Voltage
(4 marks)
b) Calculate the maximum and the minimum values of the following resistors given the colour codes (all answers in K^{Ω})
i) Red, green, yellow
ii) Blue, black, purple, silver
iii) Yellow, red, yellow, gold
c) Determine the colour codes for the following resistors:

	$\Omega \pm$	
i)	1.9M	20\%
	$\Omega \pm$	
ii)	330K	10\%
	$\Omega \pm$	
iii)	470	5\%
	$\Omega \pm$	
iv)	4.7M	2\%

d) Differentiate between alternating current (A.C) and direct current (D.C) citing application for each
(9 marks)

Question 2

a) Three resistors of $2 \mathrm{~K}^{\Omega}, 10 \mathrm{~K}{ }^{\Omega}$ and $80 \mathrm{~K}{ }^{\Omega}$ are connected in parallel. They are the connected in series to 5 K and 7 K resistors. The network is then supplied with 12 V d.c. Calculate:
i) Total resistance in the circuit
ii) Voltage drop in the parallel circuit
iii) Total current in the circuit
iv) Current through $2 \mathrm{~K}{ }^{\Omega}, 10 \mathrm{~K}{ }^{\Omega}$ and $80 \mathrm{~K}{ }^{\Omega}$ resistors
v) Total power in the circuit
b) Differentiate between step-up and step-down transformers
c) With the aid of circuit diagrams, explain the following with regard to diodes
i) Forward biasing
ii) Reverse biasing

Question 3

a) Define the following terms:
i) Capacitance
ii) Time constant
iii) Transmission ratio
iv) Self inductance
v) Mutual inductance
b) Briefly explain the following
i) Intrinsic semiconductor
ii) Extrinsic semiconductor
iii) Doping
c) Differentiate between rectification and voltage regulation

Question 4

$$
\mu \quad \mu
$$

a) Three capacitors of 300 F and 400 F are connected in series and then connected to 3600 μ

F capacitor in parallel. The network is then supplied with 12V D.C.
i) Draw the circuit diagram
ii) Calculate the capacitance in the circuit
μ
iii) Charge across the 3600 F capacitor
iv) Energy in the circuit
b) State FOUR applications for transformers
c) With the aid of graphs explain the ohms law on:
i) Current
ii) Voltage

Question 5

a) Using circuit diagram show the following transistors configurations:
i) Common base
ii) Common collector
iii) Common emitter
(9 marks)
b) Explain the following:
i) Resistance
ii) Reactance
iii) Impedance

$$
Z^{2}=\sqrt{R^{2}+\left(X_{L}^{2}-X_{C}^{2}\right)}
$$

c) With the aid of phasor diagram show that

