

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION & COMMUNICATION TECHNOLOGY – DICT2K11/DICT11M

APS 2103: PHYSICS

END OF SEMESTER EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer booklet

Answer question **ONE (COMPULSORY)** and any other **TWO** questions

This paper consists of **THREE** printed pages **Question 1 (Compulsory)**

a)	State the Kirchhoff Law on				
	ii) Voltage	(4 marks)			
b)) Calculate the maximum and the minimum values of the following resistors given the col Ω				
	codes (all answers in K ²)				
	i) Red, green, yellow				
	ii) Blue, black, purple, silver				
	iii) Yellow, red, yellow, gold	(9 marks)			
c)	Determine the colour codes for the following res $\Omega \pm$	istors:			

i)	1.9M	20%	
	$\Omega \pm$		
ii)	330K	10%	
	$\Omega \pm$		
iii)	470 5	%	
	$\Omega \pm$		
iv)	4.7M	2%	(8 n

d) Differentiate between alternating current (A.C) and direct current (D.C) citing application for each (9 marks)

Question 2

Ω Ω Ω and 80K are connected in parallel. They are the a) Three resistors of 2K , 10K Ω Ω connected in series to 5K and 7K resistors. The network is then supplied with 12V d.c. Calculate: Total resistance in the circuit i) Voltage drop in the parallel circuit ii) Total current in the circuit iii) Ω Ω Ω Current through 2K⁻⁻, 10K⁻⁻ and 80K resistors iv) Total power in the circuit (10 marks) v) b) Differentiate between step-up and step-down transformers (4 marks) c) With the aid of circuit diagrams, explain the following with regard to diodes Forward biasing i) ii) **Reverse** biasing (6 marks)

Question 3

a) Define the following terms:

	i) ii)	Capacitance Time constant					
	iii)	Transmission ratio					
	iv)	Self inductance					
	V)	Mutual inductance	(10 marks)				
b)	Briefly	v explain the following					
	i)	Intrinsic semiconductor					
	ii)	Extrinsic semiconductor					
	iii)	Doping	(6 marks)				
c)	Differe	entiate between rectification and voltage regulation	(4 marks)				
Qu	estion	4					
	μ μ						
a)	Three capacitors of 300 F and 400 F are connected in series and then connected to 3600 μ						
	F ca	pacitor in parallel. The network is then supplied with 12V D.C.					
	i)	Draw the circuit diagram					
	ii)	Calculate the capacitance in the circuit μ					
	iii)	Charge across the 3600 F capacitor					
	iv)	Energy in the circuit	(10 marks)				
b)	State B	OUR applications for transformers	(4 marks)				
c)	With the aid of graphs explain the ohms law on:						
	i)	Current					
	ii)	Voltage	(6 marks)				
Qu	estion	5					
a)	Using	circuit diagram show the following transistors configurations:					
	i) Ŭ	Common base					
	ii)	Common collector					
	iii)	Common emitter	(9 marks)				
b)	Explai	n the following:					
	i)	Resistance					
	ii)	Reactance					
	iii)	Impedance	(6 marks)				
		$Z^{2} = \sqrt{R^{2} + (X_{r}^{2} - X_{c}^{2})}$					
C)	With t	ne aid of phasor diagram show that	(5 marks)				
-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	the and or Printon and from one of that	(3				