

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 DIPOMA IN BUILDING \& CIVIL ENGINEERING (DBC 13J)

APS 2101: PHYSICS FOR ENGINEERS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Using graphical illustrations state and explain the Ohm's Law
b) With the aid of diagrams, explain how you would perform the following measurements:
(i) Voltage in a circuit
(ii) Current in a circuit
(iii) Resistance in a circuit
c) Calculate the resistance of a copper wire of 240 m with a cross-section area of $1.5 \mathrm{~mm}^{2}$

$$
\begin{equation*}
\left.{ }_{(}^{\rho} \text { for copper }=0.0175 \times 10^{-6} \mathrm{~m}\right) \tag{3marks}
\end{equation*}
$$

Ω
d) Calculate the length of a steel wire of 0.8 mm diameter having resistance of 192

$$
\left({ }^{\rho} \text { for steel }=0.13 \times 10-6{ }^{\Omega} \mathrm{m}\right)
$$

SECTION B (Answer any TWO questions from this section)

Question Two

a) Define the following terms:
(i) Resistivity
(ii) Charge
(iii) Electromotive force
(iv) Capacitance
b) (i) State the Law of floatation
(ii) A spherical bob of mass 194 g and radius 10.5 cm is suspended by a spring balance and completely immersed in oil of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate:
(i) Density of the spherical bob
(ii) Reading in the spring balance
(10 marks)

Question Three

a) State the Hooke's Law
b) The values in the table below were obtained for the period (T) of vertical oscillation of a steel spiral loaded with different weights:

Weight W (N)	0.25	0.5	0.75	1.00	1.25
Period T (sec)	0.95	1.15	1.30	1.40	1.55
\mathbf{T}^{2}					

(i) Complete the table
(ii) Plot the graph of T^{2} against W
(7 marks)

$$
T=2 \pi \sqrt{\frac{w+W s}{g k}}
$$

c) Supposing W and T are related by the equation

Where: Ws is the weight of the spring
K is the spring constant
W is the load weight and
g is the gravitational acceleration from your graph in $\mathrm{b}(\mathrm{ii})$, determine the values of Ws and K
(6 marks)
d) Describe the following terms:
(i) Mechanical Advantage
(ii) Velocity Ratio
(5 marks)

Question Four

a) Define:
(i) The Radian
(ii) Angular displacement
(iii) Angular velocity
b) A bob having a mass of 1 kg is moving in a uniform circular path in a vertical plane having a radius of 1 M . If it is whirled with the frequency of 2 cycles/second. Calculate:
(i) Tension in the string when the bob is at the top most part of the circle
(ii) Tension when the bob is at the bottom
(iii) At what position of the object is the string likely to break
(iv) What is the maximum speed required to maintain the string under tension?
(14 marks)

Question Five

a) State the Kinetic theory of matter
(2 marks)
b) A refrigeration maker use of the cooling effects caused by evaporation. What is the function of the following parts of a refrigeration
(i) Pump
(ii) Cooling fins
(iii) Thermostat
(6 marks)
c) A stone of mass 2 kg is attached to a string 3 m long and made to revolve in a horizontal circle of radius 1m. Find:
(i) The tension in the string
(ii) The linear velocity
(iii) The angular velocity
(12 marks)

