THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY

CERTIFICATE IN COMPUTER MAINTENANCE \& INFORMATION COMMUNICATION TECHNOLOGY-CMNT 2K11M

APS 1103: FUNDAMENTALS OF PHYSICS
END OF SEMESTER EXAMINATIONS
SERIES: AUGUST/SEPTEMBER 2011
TIME: 2 HOURS

[^0]
SECTION A COMPULSORY (30 MARKS)

Question 1

a) Explain the OHMS law using graphical illustrations
$\Omega \quad \Omega \quad \Omega$
b) Three resistors of $20 \mathrm{~K}, 10 \mathrm{~K}$ and 80 K are connected in parallel. They are then connected $\Omega \quad \Omega$ in series to 50 K and 70 K resistors. The network is then supplied with 24 V d.c. Calculate:
(i) Total resistance in the circuit
(ii) Voltage drop in the parallel circuit
(iii) Total current in the circuit
(iv) Current through 200K ${ }^{\Omega}, 10 \mathrm{~K}^{\Omega}$ and 80K ${ }^{\Omega}$ resistors
(v) Total power in the circuit
c) Determine the colour codes for the following resistors
(i) $1.9 \mathrm{M}{ }^{\Omega \pm} 20 \%$
(ii) $330 \mathrm{~K}{ }^{\Omega \pm} 10 \%$
(iii) $470{ }^{\Omega \pm}{ }_{5 \%}$
(iv) $4.7 \mathrm{M}{ }^{\Omega \pm}{ }_{2 \%}$
d) With the aid of a circuit diagram, explain the operation of a full wave bridge rectifier

SECTION B (ANSWER ANY TWO QUESTIONS)

This section consists of FOUR questions 20 marks each.
Choose any two questions

Question 2 (20 marks)

a) Calculate the maximum and the minimum values of the following resistors given the colour codes. (All answers in K^{Ω})
(i) Violet, green, yellow
(ii) Blue, black, purple, silver
(iii) Green, red, yellow, gold
b) Differentiate between step-up and step-down transformers
c) Briefly explain the following
(i) Intrinsic semiconductor
(ii) Extrinsic semiconductor
(iii) Doping

Question 3 (20 marks)

a) Define the following terms:
(i) Capacitance
(ii) Time constant
(iii) Transmission ratio
(iv) Self inductance
(v) Mutual inductance
b) With the aid of circuit diagrams, explain the following with regard to diodes
(i) Forward biasing
(ii) Reverse biasing
c) Differentiate between rectification and voltage regulation

Question 4 (20 marks)

$$
\begin{array}{lll}
\mu & \mu & \mu
\end{array}
$$

a) Three capacitors of $300 \mathrm{~F}, 200 \mathrm{~F}$ and 400 F are connected in series and then connected to $3600{ }^{\mu}$ F capacitor in parallel. The network is then supplied with 12V D.C.
(i) Draw the circuit diagram
(ii) Calculate the capacitance in the circuit
(iii) Charge across the 3600 F capacitor
(iv) Energy in the circuit
b) Describe TWO applications of P-N junction diodes
c) Explain the kirchoffs law on:
$\begin{array}{ll}\text { (i) Current } \\ \text { (ii) } & \text { Voltage }\end{array}$

Question 5 (20 marks)

a) Using circuit diagram, show the following transitors configurations
(i) Common base
(ii) Common collector
(iii) Common emitter
b) Explain the following
(i) Resistance
(ii) Reactance
(iii) Impedance
c) With the aid of diagrams, differentiate between N-P-N and P-N-P transitors

[^0]: Instructions to Candidates:
 This paper consist of TWO sections A and B
 Answer question ONE (COMPULSORY) and any other TWO questions from the list of questions below
 This paper consists of THREE printed pages

