THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

APS 1101: PHYSICS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)

Question One

a) Define the following terms:
(i) Turbulent flow
(ii) Streamlined flow
(iii) Surface tension
(iv) Archimedes principle
(v) Viscosity
b) A tube conveying fluid of relative density 1.2 tappers from 300 mm diameter at inlet to 100 mm at exit. The volumetric flow rate being $0.12 \mathrm{~m}^{3} / \mathrm{s}$. Determine the velocities at inlet and exit and the pressure at exit.
(7 marks)
c) (i) Derive the equations of linear motion
(10 marks)
(ii) Differentiate linear velocity and angular velocity.
(2 marks)
d) Explain the following terms:
(i) Projectile motion
(ii) Range
(iii) Trajectory
(iv) Time of flight
(v) Circular motion
(vi) Speed
(6 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Explain the meaning of the following terms giving the SI units of each.
(i) Displacement
(ii) Velocity
(iii) Acceleration
(3 marks)
b) A car is moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ accelerates uniformly at the rate of $2 \mathrm{~m} / \mathrm{s}$, to reach a velocity of $20 \mathrm{~m} / \mathrm{s}$. Find:
(i) The time taken
(ii) Distance travelled
c) Sketch the following graphs:
(i) Displacement time graph showing uniform velocity
(ii) Displacement time graph showing deceleration
(iii) Velocity time graph showing uniform acceleration
d) A body is projected vertically upwards at $50 \mathrm{~m} / \mathrm{s}$. Find:
(i) How high it will go.
(ii) What time elapses before it is at a height 36 m .

Question Three

a) (i) State Ohm's Law
(ii) Explain any THREE factors that affect resistance of a conductor.
(7 marks)
b) (i) State Lenz's Law
(ii) With an aid of a sketch, describe the principle of operation of an electric motor.
(7 marks)
c) An alluminium wire 7.5 m long is connected in parallel with a copper wire 6 m long. When a current of 5 A is passed through the combination, it is found that the current in the alluminium wire is 3 A . The diameter of the alluminium wire is 1 mm . Determine the diameter of copper wire. Resistivity of $0.017 \mu \Omega m \quad \mu \Omega m$
copper is ; that of the alluminium is 0.028
(6 marks)

Question Four

a) (i) Define the following terms:
i. Direct stress
ii. Direct strain
iii. Young's modulus
iv. Poisson's ratio
(ii) Stake Hooke's Law
(6 marks)
b) A bar of 26 mm diameter is subjected to a tensile load of 50 KN . Calculate the extension of an a $G N / m^{2}$
300mm length $\mathrm{E}=200$
(6 marks)
c) An axial load of 14 KN is applied to a bar of cold drawn copper and produces an extension of 0.26 mm on a gauge length of 250 mm . If the bar is of square section 10 mm side and the decrease in thickness is measured as 0.0034 mm , find young's modulus and poisson's ratio for copper.
(8 marks)

Question Five

a) Differentiate the following terms:
(i) Heat and temperature
(ii) Heat capacity and specific heat capacity
(4 marks)
b) (i) Define thermal conductivity
(ii) Calculate the quantity of heat conducted through $2 \mathrm{~m}^{2}$ of a brick wall 12 cm thick in 1 hour if the temperature of are side $8^{\circ} \mathrm{C}$ and the other side is $28^{\circ} \mathrm{C}$ (Thermal Conductivity of brick $=0.13$ $\mathrm{Wm}^{-1} \mathrm{k}^{-1}$)
c) (i) Define cubic expansivity
(ii) The height of mercury in a barometer provided with a brass scale correct at $\mathrm{O}^{\circ} \mathrm{C}$ is observed to be
749.0 mm in an occasion when the temperature is $15^{\circ} \mathrm{C}$ and the height of a column of mercury at $\mathrm{O}^{\circ} \mathrm{C}$ which would exert an unequal pressure. Assume that the cubic expansitivities
(8 marks)

