THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
CERTIFICATE IN BUILDING \& CIVIL ENGINEERING
APS 1101: APPLIED PHYSICS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions. Answer any THREE question questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (20 Marks)
a) Use the Kinetic Theory of matter to explain the change in state for the THREE states of matter.
(8 marks)
b) Calculate the density of a rectangular block of mass 10 kg measuring 2 m by 40 cm by 2 cm .
c) (i) Explain using illustration on how to measure density of sand using density bottle (4 marks)
(ii) State the precautions taken in the experiment in c (i)
(2 marks)
d) What volume of brass that has a density of $8.5 \mathrm{gcm}^{-3}$ which must be attached to a piece of wood of mass 100 g and density $0.2 \mathrm{gcm}^{-3}$ so that the two will just submerge beneath water. Take: Density of water as $1 \mathrm{gcm}^{-3}$.
(3 marks)

Question Two (20 marks)

a) Define capillarity.
b) State THREE factors that affect capillary.

$$
Y=\frac{r h \rho g}{2}
$$

$$
\rho=\begin{aligned}
& \rho= g= \\
& \text { v - andine and }
\end{aligned}
$$

c) Show that where $Y=$ surface tension density radius and gravitational acceleration.
d) Differentiate between adhesion and cohesive forces.
e) Illustrate TWO ways of measuring a cute angle of contact and obtuse angle of contact.
(2 marks)
f) Explain the relationship between the angle of contact and capillary.
(4 marks)
Question Three (20 marks)
a) A rubber cord of catapult has a cross-sectional area of $2 \mathrm{~mm}^{2}$ and initial length of 0.20 m and is stretched to 0.24 m to fire a small object of mass 10 g . Calculate the initial velocity of the object when

$$
E=6 \times 10^{8}
$$

it just leaves the catapult. pa for rubber.
b) Define modulus of rigidity
c) (i) State hook's Law
(ii) Describe with help of a rough graph the behavior of a copper which hangs vertically and is loaded with a gradual increasing load until it finally breaks.
d) A wire of original length 100 cm and diameter 0.5 cm was stretched to 102 cm and its diameter reduced to 0.495 cm . Calculate the Poisson's ratio.
e) State the SI units of:
i) Stress
ii) Spring constant

Question Four (20 marks)

a) Show that for a bicycle ride round circular track.
(5marks)
$\tan \theta=\frac{V^{2}}{r g}$
b) Explain the operations of centrifuges.
(4 marks)
c) A model car moves round a circular track of radius 0.3 m at 2 revolutions per second determine.
i) The angular speed
ii) The period T
iii) Speed V for the car.
d) Explain why a body in a circular motion is said to accelerate yet its moving with a constant speed.
(2 marks)

Question Five (20 marks)

a) Define:
(8 marks)
i) Distance
ii) Displacement
iii) Velocity
iv) Acceleration
b) A car travels at a uniform velocity of $20 \mathrm{~m} / \mathrm{s}$ for 5 S . The breaks are then applied and the car comes to rest with uniform retardation in further 8 second. Draw a sketch of velocity time graph. How far does the car travel after the breaks are applied?
(4 marks)
c) Change the following angles to radian:
i) 305°
ii) 60°
(8 marks)

