

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

CERTIFICATE IN BUILDING & CIVIL ENGINEERING

APS 1101: APPLIED PHYSICS

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of **FIVE** questions. Answer any **THREE** question questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One (20 Marks)**

a)	Use the Kinetic Theory of matter to explain the change in state for the THREE states	of matter.	
b)	Calculate the density of a rectangular block of mass 10kg measuring 2m by 40 cm by	2cm.	
c)	(i) Explain using illustration on how to measure density of sand using density bottle	(3 marks) (4 marks)	
	(ii) State the precautions taken in the experiment in c (i)	(2 marks)	
d)	What volume of brass that has a density of 8.5gcm ⁻³ which must be attached to a piece mass 100g and density 0.2gcm ⁻³ so that the two will just submerge beneath water. Tak water as 1gcm ⁻³ .	e of wood of ke: Density of (3 marks)	
Question Two (20 marks)			
a)	Define capillarity.	(2 marks)	
b)	State THREE factors that affect capillary. $v = \frac{rh\rho g}{rh\rho g}$	(3 marks)	
c) d)	$\rho = r =$ Show that where <i>Y</i> = surface tension density radius and acceleration. Differentiate between adhesion and cohesive forces.	g = gravitational (5marks) (4 marks)	
e)	Illustrate TWO ways of measuring a cute angle of contact and obtuse angle of contact.		
f)	Explain the relationship between the angle of contact and capillary.	(2 marks) (4 marks)	
Question Three (20 marks)			
a)	A rubber cord of catapult has a cross-sectional area of $2mm^2$ and initial length stretched to 0.24m to fire a small object of mass 10g. Calculate the initial velocity of $E = 6 \times 10^8$	of 0.20m and is f the object when	
	it just leaves the catapult. pa for rubber.	(5 marks)	
b)	Define modulus of rigidity	(2 marks)	
c)	(i) State hook's Law(ii) Describe with help of a rough graph the behavior of a copper which hangs vertica with a gradual increasing load until it finally breaks.	ally and is loaded (8 marks)	
d)	A wire of original length 100cm and diameter 0.5cm was stretched to 102cm and its to 0.495cm. Calculate the Poisson's ratio.	diameter reduced (3 marks)	
e)	State the SI units of: i) Stress	(2 marks)	

ii) Spring constant

Question Four (20 marks)

a) Show that for a bicycle ride round circular track.

$$\tan\theta = \frac{V^2}{rg}$$

- b) Explain the operations of centrifuges.
- c) A model car moves round a circular track of radius 0.3m at 2 revolutions per second determine.
 - i) The angular speed
 - ii) The period T
 - iii) Speed V for the car.

d) Explain why a body in a circular motion is said to accelerate yet its moving with a constant speed.
 (2 marks)

Question Five (20 marks)

- a) Define:
 - i) Distance
 - ii) Displacement
 - iii) Velocity
 - iv) Acceleration
- b) A car travels at a uniform velocity of 20m/s for 5S. The breaks are then applied and the car comes to rest with uniform retardation in further 8 second. Draw a sketch of velocity time graph. How far does the car travel after the breaks are applied? (4 marks)
- c) Change the following angles to radian:
 - **i)** 305°
 - **ii)** 60°

(8 marks)

(4 marks)

(5marks)

(9 marks)

(8 marks)