DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

SMA 2273: APPLIED MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: MARCH 2014
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions in section B
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Distinguish between the following terms:
(i) Force and power
(ii) Coplanar and concurrent forces
b) (i) Express force as a function of velocity and as a function of displacement
(ii) A particle of unit mass moving on a straight line is acted upon by a force given by $-4 \times \mathrm{N}$, where x is the displacement of a 1 kg particle. The particle is at rest when $\mathrm{x}=3 \mathrm{~m}$. Find the velocity when $\mathrm{x}=$ 1 m .
c) A Golf ball of mass 0.06 kg resting on a toe is given a horizontal impulse of 18 NS . Calculate velocity with the ball takes off.
d) A force of magnitude 4 N and 3 N acts along sides AB and AD of a square ABCD respectively with sides 2 m . Find the perpendicular distance of the line of action of their resultant R from 0 which is the midpoint of DC.
(4 marks)
e) A particle is projected vertically upwards with a velocity of $14 \mathrm{~ms}^{-1}$ calculate:
(i) The time it takes to return to its point of projection
(2 marks)
(ii) The height to which it rises
(iii) The time after its projection when its speed is $7 \mathrm{~ms}^{-1}$

SECTION B (Answer any TWO questions from this section)

Question Two

a) A particle of 1 unit mass moves along a curve in a force field, F given by $\vec{F}=(6 t-8) i-60 t^{3} j+(20 t 3+36 t 2) \vec{K}$ where t is the time. If the initial position and velocity are:
$\vec{V}=2 i-3 k$
$\vec{V}_{i}=5 i+4 j$
Find:
(i) Acceleration and magnitude of its acceleration at $t=2$
(4 marks)
(ii) Velocity and magnitude of velocity at $t=2$
(iii) Momentum at $\mathrm{t}=2$ seconds
b) A crate is to be moved up an inclined plane 10 m long and 6 m high. If the crate weigh 100 N and it is to be pulled up at a uniform speed. Compute:
(i) The work done (assumed plane is frictionless)
(4 marks)
(ii) How much work would be done by lifting the crate through a height of 6 m

Question Three

a) Stat the Newton's second law of motion
(2 marks)
b) Two particles have position vectors given by:

$$
\vec{V}=4 t i-2 t^{2} j-5 t k \quad \vec{V}_{i}=\left(2 t^{2}-t\right) \hat{i}+t^{3} j-4 t{ }^{n} k
$$

(i) The relative velocity of the $2^{\text {nd }}$ particle with respect to $1^{\text {st }}$ particle when $\mathrm{t}=3$ secs.
(ii) The relative acceleration of the $2^{\text {nd }}$ particle with respect to $1^{\text {st }}$ particle at the same time.
c) A bullet of mass 30 g is fired horizontally into a small block of 8 kg which is suspended by string 2 m long. The bullet remains embedded in the wood and the block resists until the string makes an angle of 30° on the vertical. Find the velocity of the bullet.
(8 marks)

Question Four

$$
P \sqrt{7}
$$

a) Two forces p and q which are inclined at 120° have a resistant of magnitude of magnitude of q in terms of p.
. Calculate the (8 marks)
b) A particle of mass 2 kg rests on the surface of a rough plane which is inclined at 30° to the horizontal. It is connected by a light inelastic string passing over a light smooth pulley at the top of the plane, to a particle of mass 3 kg which is hanging freely. If the coefficient of friction between the 2 kg mass and the plane is $1 / 3$
(i) Show all the forces acting on the particle
(ii) Find the acceleration of the system when it is released from rest
(iii) Find the tension in the string
(2 marks)
(iv) Find the force exerted by the string on the pulley
c) Define the term equilibrium as relating to forces
(2 marks)

Question Five

a) A particle moves in a circle of radius 20 m of its tangential speed is $40 \mathrm{~m} / \mathrm{s}$. Determine:
(i) The angular speed
(ii) Angular acceleration and normal acceleration
(iii) The arc length covered in time $t=5$ secs
(iv) The angle subtended in time $t=5$ secs
b) Determine the work done in moving a particle once around a circle C is (x, y) plane; if the particle has the centre at the origin and radius 3 units, and if the force is given by $F=(2 x-y+z) i+\left(x+y-z^{2}\right) j+(3 x-2 y+4 z)^{n}{ }^{n}$

