

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING/BUILDING \& CIVIL ENGINEERING/CIVIL ENGINEERING

(BSME 13/BSCE 13/BSCE 13)
SMA 2177: APPLIED GEOMETRY

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages
SECTION A (COMPULSORY)
Question One

$$
-360^{\circ} \leq x^{\circ} \leq 360^{\circ} \quad 4 \cos ^{2} x+9 \sin x-6=0
$$

a) Solve in the domain

$$
x^{2}+4 y^{2}-6 x-16 y-11=0
$$

b) Sketch the curve and determine its foci and eccentricity. (7 marks)

$$
\frac{\sin 2 A+\cos 2 A+1}{\sin 2 A+\cos 2 A-1}=\frac{\tan \left(45^{\circ}+A\right)}{\tan A}
$$

c) Show that

$$
r=a(1+2 \cos \theta)
$$

d) Find the Cartesian equation of the polar equation
e) Find the equation of the circle which passes through the point $(1,0)$ and touches the line at the pint $(2,-1)$
f) Find the acute angle between the two lines L_{1} and L_{2} with respective slopes $m 1=3$ and $m 2=7$. If the lines intersect at $(1,2)$ calculate the distance of the point $(5,4)$ from L_{1}
(6 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Solve within the domain indicated:

$$
\sin 5 x+\sin 3 x=\cos x,-90^{\circ} \leq x^{\circ} \leq 90^{\circ}
$$

(i)

$$
4 \sin x-3 \cos x=2,-200^{\circ} \leq x^{\circ} \leq 200^{\circ}
$$

(ii)
b) Show that with the usual notation of a triangle ABC :

$$
\sin \frac{1}{2} A= \pm \sqrt{\frac{(s-b)(s-c)}{b c}}
$$

where s is half of the perimeter of the triangle
(7 marks)

Question Three

a) Derive the sine rule in terms of the circumradius, R
b) Solve triangle RST if $\mathrm{r}=3.5, \mathrm{~S}=4.7$ and $\mathrm{t}=2.8$
c) An ellipse has its foci at the points $(-1,0)$ and $(7,0)$. If its eccentricity is $1 / 2$ find its equation in rectangular and parametric forms.
(10 marks)

Question Four

$$
x^{2}=9 y^{2}=9
$$

a) The hyperbola is given:
(i) Sketch the hyperbola
(ii) Find the equation of the tangents to the hyperbola that are drawn from the points $(3,2)$ and find the points of contact
(11 marks)

$$
y^{2}=49 x
$$

b) Find the point of intersection of tangents drawn to the parabola at the point t_{1}, and t_{2} where t_{1}, S, t_{2} are collinear where s is the focus of the parabola

Question Five

$$
r=1+2 \cos \theta
$$

a) Sketch the curve represented by the polar equation

$$
x^{2}+y^{2}-8 x+2 y+7=0
$$

b) Given the circle
(i) Verify that the point $(3,2)$ lies on the circle
(ii) Determine the centre of the circle and hence find the equation of the tangent to the circle through the point $(3,2)$
c) Verify the identity:

$$
\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

