

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE

AMA 4321: ANALYTICAL APPLIED MATHEMATICS

END OF SEMESTER EXAMINATION **SERIES: DECEMBER 2014** TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables _
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **TWO** printed pages

Question One (Compulsory)

$$n=2\int_0^\alpha e^{-t^2}t^{2n-1}dt$$

a) Show that

 $B(m,n)=\frac{m-n}{m+n}$

b) Establish the relation

 $H(t) = \begin{cases} t+1 & \text{if } 0 \le t \le 2\\ 3 & \text{if } f > 2 \end{cases}$

c) Find the Laplace transform of $(D^{2} + 2DD^{1} - 8D^{12})z = \sqrt{2x + 3y}$

d) Solve

(5 marks)

(5 marks)

(5 marks)

(6 marks)

 $1 - x + x^2$

e) Express in the form of the Legendre polynomial

(3 marks)

(3 marks)

(3 marks)

$$z = f(x + ct) + g(x - ct)$$

f) Form a partial differential equation from dx

$$\frac{dx}{\sqrt[3]{1-x^3}}$$

g) Evaluate

Question Two

a) Use the Power series method to solve the differential equation about the ordinary point x = 0 **(10 marks)**

$$(1-x^2)y''-6xy'-4y=0$$

b) Solve the differential equation below using the Laplace transform:

$$y''(t) + 6y'(t) + 9y(t) = t^2 e \ ty(0) = 2y'(0) = 6$$
(10 marks)

Question Three

a) If $J_n^{(x)}$ is the Bessel function of order n, prove that:

$$J_{\frac{1}{2}}^{(x)} = \sqrt{\frac{2}{\pi x}} \sin x$$
(i)
$$\frac{d}{dx} \left(x^{-n} J_n^{(x)} \right) = -x^{-n} J_{n+1}^{(x)}$$
(ii)
(3 marks)

b) Find the Fourier series of the function:

$$f(x) = |x| - \pi < x < \pi$$
in the interval **(7 marks)**

c) Find the singular, regular singular and irregular singular point of the differential equation $2x^2 \frac{dy^2}{dx^2} - x \frac{dy}{dx} + (x-5)y = 0$ (5 marks)

Question Four

a) Prove the Legendre duplication formula:

$$2n = 2^{2n-1} \frac{n \quad n+1}{\pi}$$

(10 marks)

 $2Fi\left(\frac{-n}{2}, \frac{-n}{2} + \frac{1}{2}, b + \frac{1}{2}, 1\right) = \frac{2^n(b)_n}{(2b)_n}$

b) Show that **Question Five**

a) Form a partial differential equation from

b) Solve the partial differential equation:

 $(D^2 - 2DD'' + D' + 2D + 2D' + 1)Z = 0$

c) Find the general solution of:

(8 marks)

(6 marks)

(10 marks)

(6 marks)

Page 3

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

 $pz - qz = z^2 + (x + y)^2$