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Question One (Compulsory)

a) Show that 
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b) Establish the relation 
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c) Find the Laplace transform of 
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(5 marks)

d) Solve 
  yxzDDDD 3282 1212 

(6 marks)
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e) Express 

21 xx 
in the form of the Legendre polynomial (3 marks)

f) Form a partial differential equation from 
   ctxgctxfz 

(3 marks)

g) Evaluate 
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Question Two

a) Use the Power series method to solve the differential equation about the ordinary point x = 0
(10 marks)

  04'6"1 2  yxyyx

b) Solve the differential equation below using the Laplace transform:
          60'209'6" 2  ytyettytyty

(10 marks)

Question Three

a) If 

 x
nJ

is the Bessel function of order n, prove that:
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(5 marks)

(ii)
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(3 marks)

b) Find the Fourier series of the function:
  xxf 

in the interval 
  x

(7 marks)

c) Find  the  singular,  regular  singular  and  irregular  singular  point  of  the  differential  equation
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(5 marks)

Question Four 

a) Prove the Legendre duplication formula:
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(10 marks)
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b) Show that 
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(10 marks)
Question Five

a) Form a partial differential equation from 
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(8 marks)

b) Solve the partial differential equation: 
  22 yxzqzpz 

(6 marks)

c) Find the general solution of: 
  01'22'"22  ZDDDDDD

(6 marks)
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