TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE
AMA 4321: ANALYTICAL APPLIED MATHEMATICS

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
n=2 \int_{0}^{\alpha} e^{-12} t^{2 n-1} d t
$$

a) Show that

$$
B(m, n)=\frac{m \quad n}{m+n}
$$

b) Establish the relation

$$
H(t)=\left\{\begin{array}{cc}
t+1 & \text { if } 0 \leq t \leq 2 \\
3 & \text { if } f>2
\end{array}\right.
$$

c) Find the Laplace transform of

$$
\left(D^{2}+2 D D^{1}-8 D^{12}\right) z=\sqrt{2 x+3 y}
$$

d) Solve

$$
1-x+x^{2}
$$

e) Express in the form of the Legendre polynomial

$$
z=f(x+c t)+g(x-c t)
$$

f) Form a partial differential equation from
(3 marks)

$$
\frac{d x}{\sqrt[3]{1-x^{3}}}
$$

g) Evaluate

Question Two

a) Use the Power series method to solve the differential equation about the ordinary point $x=0$

$$
\left(1-x^{2}\right) y^{\prime \prime}-6 x y^{\prime}-4 y=0
$$

b) Solve the differential equation below using the Laplace transform:

$$
\begin{equation*}
y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=t^{2} e \operatorname{ty}(0)=2 y^{\prime}(0)=6 \tag{10marks}
\end{equation*}
$$

Question Three

$J_{n}^{(x)}$
a) If is the Bessel function of order n, prove that:

$$
J_{1 / 2}^{(x)}=\sqrt{\frac{2}{\pi x} \sin x}
$$

(i)
b) Find the Fourier series of the function:

$$
\begin{equation*}
f(x)=|x|{ }_{\text {in the interval }}-\pi<x<\pi \tag{7marks}
\end{equation*}
$$

c) Find the singular, regular singular and irregular singular point of the differential equation

$$
\begin{equation*}
2 x^{2} d y^{2} / d x^{2}-x d y / d x+(x-5) y=0 \tag{5marks}
\end{equation*}
$$

Question Four

a) Prove the Legendre duplication formula:

$$
2 n=2^{2 n-1} \frac{n \quad n+1}{\pi}
$$

$$
2 F i\left(\frac{-n}{2}, \frac{-n}{2}+1 / 2, b+1 / 2,1\right)=\frac{2^{n}(b)_{n}}{(2 b)_{n}}
$$

b) Show that

Question Five

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

a) Form a partial differential equation from

$$
p z-q z=z^{2}+(x+y)^{2}
$$

b) Solve the partial differential equation:

$$
\left(D^{2}-2 D D^{\prime \prime}+D^{\prime}+2 D+2 D^{\prime}+1\right) Z=0
$$

c) Find the general solution of:

(6 marks)

