

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

BACHELOR OF TECHNOLOGY IN INFORMATION TECHNOLOGY (BTIT MAY2011/S-EV)

AMA 4203: STATISTICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: MAY/JUNE 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions Answer any **THREE** questions. Question **ONE** is Compulsory Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (Compulsory - 30 marks)

Question One (30 Marks)

a) The weights of a population of men are normally distributed with mean 60 kg and standard deviation 5kg. what is the probability that the weight of a man chosen at random is:

i) Less than 61 kgii) Less than 65 kgiii) Between 61 kg and 65 kg	
iv) Greater than 70 kg	
v) Less than 57kg	(10 marks)
<i>,</i> 0	× ,
b) Show that the mean of a Poisson distribution is	(10 marks)
c) Explain the following terms as used in probability	
ii) Sample space	
iii) Exhaustive events	

iv) Equally likely events

SECTION B (Answer any TWO questions – 40 Marks)

Question Two (20 marks)

A binomial distribution is defined as

$$P^{(r)} = \binom{n}{r} p^r q^{n-r}$$

Show that the mean and variable of the distribution is *np* and *npq* respectively (20 marks)

Question Three (20 marks)

The following are scores of students in a statistics class in the mid-term and final examinations

Studen	Mid-Term	Final
t		
1	98	90
2	66	74
3	100	98
4	96	88
5	88	80
6	45	62
7	76	78
8	60	74
9	74	86
10	82	80

Develop a regression equation which may be used to predict final examination scores from the midterm score.

Predict the final score for a mid-term score of 70

Question Four (20 marks)

- a) Suppose we have a group of 30 students of whom 15 are blue eyed, 5 left handed and 2 both blue eyed and left handed. Find the probability of left handed given they are blue eyed. (4 marks)
- b) Two teams A and B play a football match against each other. The probabilities of each team scoring 0, 1, 2,3 goals are shown below.

No. of goals	Probability of scoring	
	Α	В
0	0.3	0.2
1	0.3	0.4
2	0.3	0.3
3	0.1	0.1

Calculate the probability of:

(20 marks)

	i) A winningii) A drawiii) B winning	(16 marks)
Qu	estion Five (20 marks)	
a)	Explain the case in which the t-statistic is appropriate is testing a hypothesis	(4 marks)
b)) A manufacture claims that his light bulbs have an average lifetime of 1500 hours. A purchaser decides to check this claim and finds that for six bulbs the lifetimes were 1472, 1486, 1401, 1350, 1610 and 1590 hours	

Does this evidence support the manufacture's claim

(16 marks)