THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN INDUSTRIAL CHEMISTRY (BTIC 12J)

AMA 4105: CALCULUS FOR SCIENCE
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)

$$
\frac{d y}{d x}
$$

a) Find from first principle for the following functions.

$$
y=7 x^{4}
$$

(i)

$$
\begin{equation*}
y=x \cos x \tag{7marks}
\end{equation*}
$$

(ii)
(7 marks)

$$
e^{y}+x^{3}=y^{3}-4
$$

b) Differentiate w.r.t x if
c) Evaluate:

$$
\begin{equation*}
\int_{-1}^{1}(2 x-1)^{2} d x \tag{3marks}
\end{equation*}
$$

(i)

$$
\int_{0}^{\pi / 2} \cos 3 x d x
$$

(ii)

$$
\int_{0}^{1} 5 x e^{4 x} d x
$$

(iii) correct to 3 significant figures.

Question Two

$$
y=x^{3}-4 x+2
$$

a) (i) Identify the maximum and minimum values of the function
(i) Sketch the graph of the function in (i) and clearly show the maximum and minimum points on the sketch.
(5 marks)
b) When viewed through a microscope a bacterium is seen to move in accordance with the equation.

$$
s=\left(4 t+6 t^{2}\right) \times 10^{-6}
$$

Find:
(i) The distance travelled between 0 and 45 seconds.
(ii) The velocity after 30 seconds.
(iii) The acceleration after 30 seconds.

Question Three

$$
\int_{1}^{2} x \ln x d x
$$

a) Evaluate correct to 4 significant figures.
b) A gas expands according to the law.

PV = Constant
When the volume is 3 m 3 , the pressure is 150 kPa .

$$
=\int_{V 1}^{V 2} P d v
$$

Given that the work done $6 \mathrm{~m}^{3}$. determine the work done the as the gas expands from $2 \mathrm{~m}^{3}$ to
c) Find the equation of (i) tangent
(ii) Normal

$$
y=1+x-x^{2}
$$

to the curve at the point $(-2,-5)$

Question Four

a) Determine the integral;

$$
\int \frac{2 x^{2}-9 x-35}{(x+1)(x-2)(x+3)}
$$

(10 marks)

$$
y=4 x-x^{2}
$$

b) (i) Sketch the area enclosed by the curve and the x-axis, clearly indicating the turning point and intercepts on your sketch.

(7 marks)

(ii) Find the area in (i)

Question Five
a) Differentiate the functions w.r.t x if:

$$
\begin{equation*}
x \tan y=y^{3} \cos x \tag{6marks}
\end{equation*}
$$

(i)

$$
x=t^{2}, y=t-2 t^{2}
$$

(ii)

$$
y^{2}=x^{3}
$$

b) Find the length of the curve between $x=0$ and $x=4$.

(6 marks)

$$
y=3 e^{t / 4}
$$

c) Determine the area bounded by the curve the t-axis and ordinates at $t=-1$ and $t=4$ correct to 4 significant figures.

