

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY

AMA 4103: CALCULUS FOR SCIENCE

END OF SEMESTER EXAMINATION

SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Define the following terms:
(i) A function
(ii) Limit of a function
$g(x)=-x^{2}+4 x+1$
b) Given . Evaluate:

$$
g(x+2)
$$

(i)
c) Evaluate the following limits:

$$
\lim _{x \rightarrow-3} \frac{\sqrt{x+7}-2}{x+3}
$$

(i)

$$
\begin{equation*}
\lim _{x \rightarrow-2} \frac{x+2}{x^{2}+x-2} \tag{3marks}
\end{equation*}
$$

(ii)

$$
y=x^{3}+3
$$

d) Find the derivative of by first principles.
e) Evaluate the following:

$$
\int_{1}^{4} \frac{1}{(x+3)^{2}} d x
$$

(i)

$$
\int 3 \sec ^{2} x d x
$$

(ii)
(2 marks)
f) Differentiate the following respect to X :

$$
\sqrt{\left(x^{2}-1\right)}
$$

(i)
(4 marks)

$$
x^{2}+x y^{2}+y^{3}=2
$$

(ii)
(3 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Determine the co-ordinates and nature of any turning points of the curve represented by the function $y=x^{3}-7.5 x^{2}+18 x+6$
(8 marks)
b) The displacement $x \mathrm{~cm}$ of slide value of an engine is given by:

$$
x=2.2 \cos 5 \pi t+3.6 \sin 5 \pi t
$$

Evaluate the velocity (in m / s) when $\mathrm{t}=30 \mathrm{~ms}$.

$$
y=2 x e^{-3 x} \quad \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0
$$

c) Given show that

$$
\frac{d^{2} y}{d \theta^{2}} \quad \theta=0 \quad y=4 \sec 2 \theta
$$

d) Evaluate when given
a) Evaluate the following integrals:

$$
\int \frac{(1+\theta)^{2}}{\sqrt{\theta}} d \theta
$$

(i)
(ii)

$$
\int_{0}^{\pi / 2} 3 \sin 2 x d x
$$

(iii)

$$
y=x^{3}-2 x^{2}-8 x
$$

b) Determine the area between the curve and the x - axis
c) If $x=2 t+3, y=t^{2}-1 \quad \frac{d y}{d x}$ find the value of \quad at $\mathrm{t}=6$

Question Four

$$
f(x)=\frac{1}{x-3} \quad g(x)=2 x
$$

a) Given and . Find each function and state its domain:
(i)

$$
f-g
$$

$$
f \bullet g
$$

(ii)
b) Evaluate:

$$
\lim _{x \rightarrow-\infty} \frac{x-1}{x^{2}+x-1}
$$

(i)

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+5}
$$

(ii)

$$
\lim _{x \rightarrow 0} \frac{3 x^{2}}{\sin ^{2} x}
$$

(iii)

$$
f(x)=\frac{x+1}{x+2} \quad g(x)=\frac{1}{x-3} \quad \operatorname{fog}^{-1}(x)
$$

c) Given and find
d) Define continuity of a function at a point $\mathrm{x}=\mathrm{x} 0$

Question Five

$$
3 x^{2}-7 y^{2}+4 x y-8 x=0
$$

a) Determine the equation of a tangent to the curve whose equation is at point $(-1,1)$
b) A particle moves from point A so that after t seconds it is s metres from A where velocity when (i) $t=0$, (ii) $t=4$ (iii) $t=5$
. Find the

$$
\ln \left(2 x^{3}\right)
$$

c) Find the derivative of

$$
\lim _{x \rightarrow 2} 2\left(\frac{x^{2}-4}{x-2}\right)=4
$$

d) Show that
e) Determine the equation of the normal to the curve $y=x+\sqrt{x}$ at (1,2)

$$
\begin{aligned}
y=x+\sqrt{x} & \\
& \text { at }(1,2)
\end{aligned}
$$

