

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING HIGHER DIPLOMA IN CIVIL ENGINEERING (HDBC)

AMA 3101: CALCULUS

END OF SEMESTER EXAMINATION

SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consists of FIVE questions.

Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One

$$
\lim _{x \rightarrow \infty}\left(\frac{3 n-2}{5 n+4}\right)
$$

a) (i) Evaluate
(3 marks)
(ii) Determine all the numbers C, which satisfy the conclusions of the main value Theorem for the following function.

$$
\begin{align*}
f(x)= & x^{3}+2 x^{2}-x \quad \text { on } \quad[-1,2] \tag{5marks}\\
& \int_{0}^{\sqrt{x}} \int_{0}^{e x / y} d y d x
\end{align*}
$$

b) (i) Solve,

$$
f(x)=\frac{\sin x-x}{\tan x-x} \quad x \rightarrow 0
$$

(ii) Use L'Hospital's Rule to determine limit of the function as

$$
\begin{equation*}
\int \tan ^{n} x d x \tag{5marks}
\end{equation*}
$$

(iii) Evaluate

Question Two

$$
f(x)=\sqrt[3]{x} \quad \sqrt[3]{1.1}
$$

a) (i) Given approximate the value for using Taylor's theorem.
(ii) A manufacturer needs to make a cylindrical can that will hold 1.5 litres of liquid. Determine the dimensions of the can that will minimize the amount of material used in its construction.

$$
\int_{0}^{0.6} \int_{0}^{.0 .8} \int_{0}^{0.3}(4 z-3 x-y) d z d y d x
$$

b) (i) Evaluate
(4 marks)
(2 marks)

Question Three

$$
\int \frac{x^{n}}{\sqrt{\left(a^{2}+x^{2}\right)}} d x
$$

a) (i) Evaluate:
(ii) Use the above solution in Q3 (a) (i) to solve,

$$
\begin{aligned}
& \int \frac{x^{5}}{\sqrt{(2+x)}} d x \\
& u=\sin ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{y}{x}\right) \quad x \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}
\end{aligned}
$$

b) Given
then find the value of
(8 marks)

Question Four

$$
y^{2}=4 x \quad x 2=4 y
$$

a) (i) Find by double integration, the area contained between the two curves,
and
(5 marks)
(ii) Find limit of the function:

$$
\begin{equation*}
f(x)=\frac{2 x^{2}-x-3}{(x+1)} \quad x \rightarrow-1 \tag{3marks}
\end{equation*}
$$

b) Use Taylor's series to approximate the value of $\sin 46^{\circ}$ correct to six decimal places.

$$
f(x, y)=e^{x^{2}} \cdot e^{y} \cos \left(x-e^{y^{3}}\right)
$$

c) Given
. Determine:

$$
\partial f / \partial x
$$

(i)

$$
\partial^{2} f / \partial x \partial y
$$

(ii)

$$
\partial f / \partial y
$$

(iii)

Question Five

$$
\int_{-\infty}^{+\infty} \frac{4 x^{3}}{\left(1+x^{4}\right)^{2}} d x
$$

a) (i) Evaluate

$$
\int_{1}^{4} \frac{d x}{(x-2)^{2 / 3}}
$$

(ii) Determine whether converges
(2 marks)
b) (i) A bridge described by the function $f(x)=\sqrt{x-1} \quad[2,5]$. The bridge is continuous and oscillates between the parameters 2 and 5 .
Show that the bridge observes the mean value theorem hypothesis.
(ii) Volume of a metal box is found to be influence by weather. During cold season, the length decreases by 0.008 and width by 0.125 . Determine its charge in volume at this season. (4 marks)
c) Evaluate:

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(\frac{2 x-y^{2}}{z}\right)
$$

