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SECTION A (COMPULSORY) 

Question 1 (30 marks)

a) Find all the first order partial derivative of the following:

(i)

    2
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xInyyxf 

(ii)
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(iii)
 yxInz  2

(iv)

2222 xyzzyx 
(15 marks)

b) Evaluate each of the following limits using L’Hospital’s Rule:

(i)
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(ii)
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
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(5 marks)

c) Evaluate,

(i)

,dxxe nx

(ii) Use this expansion to solve, 

dxxex 52

0
(10 marks)

SECTION B (Answer any TWO questions from this section) 

Question 2 (20 marks)

a) (i)  Obtain a reduction formula for the intergral, 

dxxxn cos

        (ii)  Use above integral in Q.2 9(a) (i) to solve, 

dxxx cos
2
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3


(8 marks)
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b) Determine the average value of each of the following functions on the given intervals;

(i)

  



 
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5
,1cos65)( 2 onttttf 

(ii)
      ,)2sin( 2cos1   onezzR z

(4 marks)

c) Evaluate 
 ,dsy

over the area of that part of the circle, 

222 ayx 
contained in the first 

quadrant. (8 marks)

Question 3 (20 marks)

a) Determine the number, c, that satisfies the Mean Value Theorem for integrals for the function 
  232  xxxf

 on the interval (1,4) (4 marks)

b) Find limit of the function 
  .4,

23

4
)( 


 x
x

x
xf

(4 marks)
c) Use Taylor’s series to determine the value of tan 64o, (to 5 decimal places) (8 marks)

d) Check whether the following integral converges or diverges 
  dx

x

x




 
24

3

1

4

(4 marks)
Question 4 (20 marks)

a) Using 
  ,3 xxf 

approximate the value for 

3 1.1
, using Taylor’s theorem (8 marks)

b) At 7 p.m, a car is travelling at 50 miles per hour.  Ten minutes later, the car has slowed to 30
miles per hour.  Show that at some time between 7 and 7:10 the car’s acceleration is exactly 120,
in units of miles per hours squared. (3 marks)

c) Evaluate 
xx

xx
x 


 sin

tan
lim 0

(4 marks)

d) A metallic box 4cm length, 3cm wide and 2.5cm high is influenced by temperature change.  Find
the change in volume when the length is increased by 0.25, width is decreased by 0.11 and height
is decreased by 0.25 (5 marks)

Question 5 (20 marks)
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a) If 
 .sincoscos  reu r

  Determine:

(i)



r

u2

(ii)

2

2


 u

(8 marks)

b) Determine whether the following diverges or converges

(i)

dx
x

1

0

1

(ii)


1

0
dxxIn

(6 marks)

c) Evaluate the following:

(i)

     drdyer yx 3

cos

(ii)
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1 0
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(6 marks)
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