THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING
AMA 3101: CALCULUS III
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Calculator/Mathematical Tables

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

a) Find all the first order partial derivative of the following:

$$
f(x, y)=y^{7} \operatorname{In}\left(x^{2}\right)+\frac{9}{y^{3}}-\sqrt{x^{2}}
$$

(i)

$$
f(x, y, z)=\cos \left\lfloor\frac{4}{x}\right\rfloor e^{x^{2} y}+5 z
$$

(ii)

$$
z=\operatorname{In}(2 x+y)
$$

(iii)

$$
x^{2}+y^{2}+z^{2}=x y z^{2}
$$

(iv)
b) Evaluate each of the following limits using L'Hospital's Rule:

$$
\frac{\tan x^{2}}{2 x}
$$

(i)

$$
\lim _{x \rightarrow \pi} \frac{\sin x+2 x}{x}
$$

(ii) (5 marks)
c) Evaluate,

$$
\int e^{x} x^{n} d x
$$

(i)

$$
\int_{0}^{2} e^{x} x^{5} d x
$$

(ii) Use this expansion to solve,

SECTION B (Answer any TWO questions from this section)

Question 2 (20 marks)

a) (i) Obtain a reduction formula for the intergral,

$$
\int x^{n} \cos x d x
$$

(ii) Use above integral in 2 (a) (i) to solve, $\int_{0}^{\pi / 2} x^{3} \cos x d x$ (8 marks)
b) Determine the average value of each of the following functions on the given intervals;

$$
f(t)=t^{2}-5 t+6 \cos (\pi t) \text { on }\left[-1, \frac{5}{2}\right]
$$

(i)

$$
R(z)=\sin (2 z) e^{1-\cos (2 z)} \text { on }[-\pi, \pi]
$$

(ii)

$$
\int y d s, \quad x^{2}+y^{2}=a^{2}
$$

c) Evaluate over the area of that part of the circle, contained in the first quadrant.

Question 3 (20 marks)

a) Determine the number, c , that satisfies the Mean Value Theorem for integrals for the function

$$
f(x)=x^{2}+3 x+2
$$

$$
\text { on the interval }(1,4)
$$

$$
f(x)=\frac{x-4}{3 \sqrt{(x-2)}}, x \neq 4 .
$$

b) Find limit of the function
c) Use Taylor's series to determine the value of $\tan 64^{\circ}$, (to 5 decimal places)

$$
\int_{-\infty}^{+\infty} \frac{4 x^{3}}{\left(1+x^{4}\right)^{2}} d x
$$

d) Check whether the following integral converges or diverges

$$
f(x)=\sqrt[3]{x}
$$

$\sqrt[3]{1.1}$
a) Using approximate the value for , using Taylor's theorem
b) At 7 p.m, a car is travelling at 50 miles per hour. Ten minutes later, the car has slowed to 30 miles per hour. Show that at some time between 7 and 7:10 the car's acceleration is exactly 120, in units of miles per hours squared.

$$
\lim _{x \rightarrow 0} \frac{\tan x-x}{\sin x-x}
$$

c) Evaluate
d) A metallic box 4 cm length, 3 cm wide and 2.5 cm high is influenced by temperature change. Find the change in volume when the length is increased by 0.25 , width is decreased by 0.11 and height is decreased by 0.25

Question 5 (20 marks)

$$
u=e^{r \cos \theta} \cos (r \sin \theta) .
$$

a) If

Determine:

$$
\frac{\partial^{2} u}{\partial r \partial \theta}
$$

(i)

$$
\frac{\partial^{2} u}{\partial \theta^{2}}
$$

(ii)
b) Determine whether the following diverges or converges

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

(i)

$$
\int_{0}^{1} \operatorname{In} x d x
$$

(ii)
c) Evaluate the following:

$$
\iint r \cos \left(e^{\left(x+y^{3}\right)} d r d y\right)
$$

(i)

$$
\int_{1}^{2} \int_{0}^{x} \frac{1}{x^{2}} d x d y
$$

(ii)

