

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA BRIDGING

AMA 2409: CALCULUS II

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket Calculator
- Mathematical Table

This paper consists of **FIVE** questions

Answer question **ONE (COMPULSORY)** from **SECTION A** and any other **TWO** questions from **SECTION B** Maximum marks for each part of a question are clearly shown

This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1

a) The widths of a boating lake at varying distances from one end are given in the following table:

Distance (m)	0	6	12	20	34	42	52	64	68	76	80
Width (m)	3.0	8.2	12.	14.2	13.8	13.	12.5	12.1	9.3	4.2	3.4
			1			0					

Plot a graph of width against distance and calculate the surface area of the lake by Simpson's Rule using 8 intervals. (Take 10mm for 5m as distance scale and 10mm for 1m as width scale) (16 marks)

b) Find:

$$\int \frac{x^2 + 3}{x - 4} \, dx$$

$$\int (1+3x)^3 dx$$

$$\int \tan 2x \ dx$$

(ii)

$$\int \tan 2x \ dx$$

(iii)

(8 marks)

$$y = 6x - x^2$$

c) Find the area lying above the x-axis and under the parabola

(6 marks)

SECTION B (Answer any TWO questions from this section)

Question 2

a) Use integration by parts to find:

$$\int \sin x \sin 3x \, dx$$

(9 marks)

b) Use trigonometric substitution to find:

$$\int \frac{dx}{x^2 \sqrt{9 - x^2}}$$

(7 marks)

c) Evaluate:

$$\int_{-3}^{-1} \left(\frac{1}{x^2} - \frac{1}{x^3} \right) dx$$

(4 marks)

Question 3

$$\frac{d^2y}{dx^2} = 2$$

a) For a certain curve

. Find its equation given that it passes through P(2, 6) with slope 10.

$$\int_3^4 \frac{(x+1) dx}{x^2(x-1)}$$

b) Use partial fraction to find:

(12 marks)

Question 4

a) Find the volume of the solid generated by revolving the first quadrant area bounded by the $y = 4 - x^2$ about the y-axis (6 marks) parabola

 $x^2 = 8y$

b) Find the centroid of the area bounded by x = 4, the x-axis and x = 4

(14 marks)

Question 5

a) Find:

$$\int \frac{8x^2 dx}{\left(x^3 + 2\right)^3}$$

(i)

$$\int \sin^4 x \ dx$$

(ii) (12 marks)

b) Find the moment of inertia with respect to the y-axis of the plane area between the parabola $y = 9 - x^2$

> and the x-axis (8 marks)