THE MOMBASA POLYTECHNIC UNIVERSITY
 COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA BRIDGING

AMA 2409: CALCULUS II

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket Calculator
- Mathematical Table

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) The widths of a boating lake at varying distances from one end are given in the following table:

Distance (m)	0	6	12	20	34	42	52	64	68	76	80
Width (m)	3.0	8.2	12. 1	14.2	13.8	13. 0	12.5	12.1	9.3	4.2	3.4

Plot a graph of width against distance and calculate the surface area of the lake by Simpson's Rule using 8 intervals. (Take 10 mm for 5 m as distance scale and 10 mm for 1 m as width scale)
b) Find:

$$
\int \frac{x^{2}+3}{x-4} d x
$$

(i)

$$
\int(1+3 x)^{3} d x
$$

(ii)

$$
\int \tan 2 x d x
$$

(iii)

$$
y=6 x-x^{2}
$$

c) Find the area lying above the x -axis and under the parabola

SECTION B (Answer any TWO questions from this section)

Question 2

a) Use integration by parts to find:
$\int \sin x \sin 3 x d x$
b) Use trigonometric substitution to find:

$$
\int \frac{d x}{x^{2} \sqrt{9-x^{2}}}
$$

c) Evaluate:

$$
\int_{-3}^{-1}\left(\frac{1}{x^{2}}-\frac{1}{x^{3}}\right) d x
$$

Question 3

$$
\frac{d^{2} y}{d x^{2}}=2
$$

a) For a certain curve \quad. Find its equation given that it passes through $\mathrm{P}(2,6)$ with slope 10 .
(8 marks)

$$
\int_{3}^{4} \frac{(x+1) d x}{x^{2}(x-1)}
$$

b) Use partial fraction to find:

Question 4

a) Find the volume of the solid generated by revolving the first quadrant area bounded by the

$$
y=4-x^{2}
$$

parabola about the y-axis

$$
x^{2}=8 y
$$

b) Find the centroid of the area bounded by , the x-axis and $x=4$

Question 5

a) Find:

$$
\int \frac{8 x^{2} d x}{\left(x^{3}+2\right)^{3}}
$$

(i)

$$
\int \sin ^{4} x d x
$$

(ii)
(12 marks)
b) Find the moment of inertia with respect to the y-axis of the plane area between the parabola $y=9-x^{2}$ and the x -axis

