THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

BRIDGING HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

AMA 2409 : APPLIED MATHEMATICS

END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011

TIME: 3 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consists of FIVE questions in TWO sections A \& B Answer questions ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY - 30 MARKS)

Question 1

a) A stone is thrown horizontally, from the top of a building 10 m high, with a velocity of $20 \mathrm{~ms}^{-1}$. Find how far from the building the stone falls on the ground $\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right)$
(6 marks)
b) An object of mass 5 kg is acted on by coplanar forces 6,8 and 3 N at bearings $030^{\circ}, 150^{\circ}$ and 270° respectively. Find the acceleration of the object and its direction
(10 marks)
c) A uniform ladder 5.0 m long has a mass of 20 kg and rests with its upper end against a smooth vertical wall and with its lower end on rough horizontal ground. The ladder is indined at 60° with the horizontal. A man of mass 60 kg is sitting on the ladder 3 m above the ground. Find:
(i) The magnitude and direction of the force exerted at the bottom of the ladder.
(ii) The coefficient of friction between the ground and the ladder $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
(14 marks)

SECTION B (Attempt any TWO questions. Each question from this section carry 20 Marks)

Question 2

a) A man of mass 70 kg is ascending up in a lift of mass 300 kg . The lift is desclerating at $1.2 \mathrm{~ms}^{-2}$. Neglecting resistance to motion. Find:
(i) The tension in the lift cable
(ii) The normal contact force between the man and the lift floor

$$
\begin{equation*}
\left(\mathrm{g}=9.8 \mathrm{~ms}^{-2}\right) \tag{7marks}
\end{equation*}
$$

b) A body of mass 3 kg lies on a rough horizontal surface and is connected by a light string over a smooth pulley to another body also of mass 3 kg which hangs freely vertically. The frictional resistance to motion is 8 N . Find the tension in the string and the acceleration of the bodies when the system is released

$$
\begin{equation*}
\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right) \tag{8marks}
\end{equation*}
$$

c) A car of mass $1,000 \mathrm{~kg}$ is towing a kart of mass 600 kg . find the breaking force of the car and force in the tow-bar when slowing down at $0.4 \mathrm{~ms}^{-2}$

Question 3

a) A body of mass 6 kg lies on a rough surface inclined at 30° with the horizontal. The body is connected by a light string over a smooth pulley at the top of the slope to another body of mass 3 kg which lies on a rough horizontal surface, with frictional resistance to motion equal to 5 N . If the acceleration of the system is $1.2 \mathrm{~ms}^{-2}$, find the coefficient of dynamic friction but for the surfaces in contact ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
b) A vehicle of mass $1.2 \times 10^{3} \mathrm{~kg}$ starts from rest and acceleration uniformly to a speed of $50 \mathrm{kmh}^{-1} \mathrm{in}$ a distance of 80 m . Find:
(i) The average driving force
(ii) The time taken to cover the given distance

Question 4

a) A stone is thrown from ground level with a velocity of $30 \mathrm{~ms}^{-1}$ at 60° with the horizontal. Calculate:
(i) Its horizontal range
(ii) The maximum height reached
(iii) Its height 1.5 seconds after being thrown ($\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(12 marks)
b) A simple pendulum has a length 80 cm and amplitude 4.0 cm . Find the maximum acceleration and velocity of the bob.

Question 5

a) Find the forces in the members of the pin-jointed structure shown in figure 1, stating whether each force is compressive or tensile

$10^{3} \mathrm{~N}$

b) A body of mass 4 kg is moving with velocity

$$
\binom{40}{0} m s^{-1}
$$

when it is acted upon by a force
Find the magnitude and direction of the velocity 2 seconds after the force begun to act
(7 marks)

