THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

BRIDGING TO HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (BHD 011)

CERTIFICATE IN ARCHITECTURE (CA 10B)

AMA 1208/2408 : CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) Find the derivative of the following function from first principle

$$
f(x)=\frac{1}{x^{3}+7}
$$

$\frac{d y}{d x}$

b) Find for the following:

$$
y=\log _{10}\left(\frac{4 x^{3}-1}{\sin x}\right)
$$

(i)

$$
y=\sqrt[3]{\left(4 x^{3}-\frac{5}{x^{3}}+1\right)}
$$

(ii)

$$
y=\frac{e^{4 x} \tan x}{\left(x^{2}+10\right) \sinh x}
$$

(iii)
(apply logarithmic method)

$$
x^{2}+8 x y+y^{2}=10
$$

c) Given a function of the form find at the following at point $(-2,6)$
(i) Equation of the tangent
(ii) Equation of the normal (9 marks)

SECTION B (Answer any TWO questions from this section)

Question 2

a) Find first derivatives for the following

$$
y=\sec ^{2 / 3} 4 x
$$

(i)

$$
y=\arctan \left(\frac{4-x}{e^{2 x}}\right)
$$

(ii)

$$
y=\operatorname{arccosh}\left(\frac{5}{x^{2}}\right)
$$

(iii)

$$
s=e^{-t} \ln t
$$

b) Given a function of the form

$$
\frac{d s}{d t}
$$

Find: (i)

$$
\frac{d^{2} s}{d t^{2}}
$$

(ii)
(7 marks)

Question 3

a) A vehicle starts from rest and covers distance s meters in t seconds. The relationship between s

$$
s=3 t^{2}-2 t
$$

and t is of the form:
find:
(i) Distance covered when the vehicle comes to rest
(ii) Acceleration after 5 seconds

$$
x^{2}+y^{2}=32 \quad y^{2}=4 x
$$
 b) Find the angles of intersection between the two functions given as and
 Question 4

a) Find the equations of the tangent and the normal to the curve at the point where $t=0$ defined

$$
x=5 e^{-t} \quad y=3 e^{t}
$$

parametrically as:
b) Find the radius of curvature at the point where for the function defined as:

$$
\begin{gather*}
x=\theta-\sin \theta \quad y=1-\cos \theta \\
\text { and } \tag{10marks}
\end{gather*}
$$

Question 5

a) A function is defined by the relationship:

$$
y=x^{2}+\frac{128}{x}
$$

Find:
i) Critical points
ii) Nature of the critical points
b) Water flows at a rate of $1 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ through the opening at the bottom of a conical funnel whose axis is perpendicular and sides slope at 30° to the vertical. Find the rate at which the water level falls when the depth of the water is 10 cm

