

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 11) DIPLOMA IN ARCHITECTURE (DA 11)

AMA 2315: ENGINEERING MATHEMATICS V

END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One

b) Find the relative maximum and minimum values of the following function

$$
f(x, y)=3 x^{2} y+x y+y^{2}-3 x
$$

c) Determine the Fourier series to represent the periodic function shown below in figure 1 .

Question Two

$$
f(x)=x+x^{2}, \quad-\pi<x<\pi
$$

a) Given that . Determine the Fourier series expression of $f(x)$
(8 marks)

$$
f(x, y)=100 x^{3 / 4} y^{1 / 4}
$$

b) Given where x represents the units of labour (at sh. 150 per unit) and y represent the units of capital (at sh. 250 per unit). The total cost of labour and capital is limited to sh. 50,000. Find the maximum production level for this manufacturer.
(8 marks)

$$
x=u / v, y=v
$$

c) The transformation of T is defined by

Find the Jacobian transformation of T.
(4 marks)

Question Three

$$
u=x-y, v=2 x+y
$$

a) Solve the system for x and y in terms of u and v. Hence find the value of the Jacobian.

$$
f(t+2 \pi)=5(\pi-t), \quad O<t<\pi
$$

b) Given the function
find the half range sine series, if

(8 marks)

$$
f(x, y)=x^{2}+3 y^{2}
$$

c) Minimize length of a metal, given as when subjected to heat constraint defined by $x+y=2$

Question Four

a) Using Langrange multipliers, determine the values of x, y, z that minimize the function $f(x, y, z)=11 x y+14 y z+15 x z$, subject to the constraint

$$
f(x, y)=x^{2}+y^{2}-x y+3 y
$$

b) Determine any relative extrema for
c) Find the Fourier coefficients and Fourier series of the square-wave function f defined by:

$$
f(x)=\left\{\begin{array}{llc}
0 & \text { if } & -\pi \leq x<0 \tag{8marks}\\
1 & \text { if } & 0 \leq x<\pi
\end{array} \quad f(x, 2 \pi)==f(x)\right.
$$

Question Five

a) Find the partial derivative of w with respect to r , if:

$$
\begin{align*}
& w=x^{2}+y^{3}, \quad x=r+e^{\text {sr }}, \quad y=\ln s \\
& \text { and } \tag{4marks}\\
& d w / d t \quad w=e^{x^{2}} y^{z}, x=\ln t^{2}, y=\tan t \quad z=e^{\tan 2 t}
\end{align*}
$$ and

$$
\begin{equation*}
f(x)=1 / 2^{x, 0 \leq x<\pi} \tag{4marks}
\end{equation*}
$$

c) Find the half range sine series of

$$
f(x, y)=x y-x^{3}-y^{3}
$$

d) Determine relative maximum and minimum values of

