

TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 12 J) DIPLOMA IN ARCHITECTURE (DA 12J)

AMA 2314: ENGINEERING MATHEMATICS

END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) Use L'Hospital's Rule to determine the limit of the following functions:
(i)

$$
f(x)=\frac{\sin x-x}{\tan x-x} \quad x \rightarrow 0
$$

$$
\lim _{x \rightarrow \infty}\left(\frac{4 x^{2}-5 x}{1-3 x^{2}}\right)
$$

(ii)
(5 marks)

$$
y^{\prime \prime}+11 y^{\prime}+24 y=0, \quad y(0)=0, y^{\prime}(0)=-7
$$

b) (i) Solve the following initial value problem (IVP) given
(8 Marks)

$$
f(x)=\frac{1}{3} x^{3}+2 x
$$

(ii) Show that satisfies the hypothesis of the mean value theorem on the interval
$(0,3)$. Determine all the values of C.

$$
L\left\{\frac{1}{26}\right\}
$$

c) Evaluate

Question Two

$$
y^{\prime \prime}-10 y^{\prime}+9 y=5 t \quad y(0)=-1, y^{\prime}(0)=2
$$

a) Use Laplace transform to solve the following IVP,

$$
\int_{1}^{2} \int_{2}^{3} \int_{0}^{1} 8 x y z d z d x d y
$$

b) (i) Evaluate

$$
x \rightarrow 2, f(x)=\frac{x^{2}-4}{x-2}
$$

(ii) Show that as , has a limiting value of 4.

$$
L^{-1}\left\{\frac{6}{s}-\frac{1}{s-8}+\frac{4}{s-3}\right\}
$$

c) Evaluate:

Question Three

$$
\int_{0}^{\sqrt{x 2}} \int_{0}^{e^{x / y}} d y d x
$$

a) (i) Evaluate
(4 marks)

$$
\lim _{x \rightarrow \infty}\left(\frac{3 n-2}{5 n+4}\right)
$$

(ii) Evaluate:

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=6
$$

b) (i) Solve,
(ii) Determine whether

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{4 x^{3} d x}{\left(1+x^{4}\right)} \tag{4marks}
\end{equation*}
$$

Question Four

a) (i) A metallic box 5 cm long, 3 cm wide and 2.5 cm high is influenced by temperature changes. Find the change in volume when the length is increased by 0.25 width is decreased by 0.15 and height is decreased by 0.05.
(ii) Use Taylor's series method to determine the value of $\tan 52^{\circ}$ (6 decimal places).
(6 marks)

$$
u=\sin ^{-1}\left\{\frac{x}{y}\right\}+\tan ^{-1}\left\{\frac{y}{x}\right\} \quad x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}
$$

b) (i) Given
find the value of
(8 marks)

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x
$$

(ii) Determine divergency or convergency, given

Question Five

$$
2 y^{\prime \prime}+3 y^{\prime}-2 y=t e^{-2 t}, y(0)=0, y^{\prime}(0)=-2
$$

a) Using Laplace transform solve,
b) Evaluate:-

$$
L\left\{6 e^{-5 t}+e^{3 t}\right\}
$$

i)

$$
L\{4 \cos (4 t)+9 \sin (4 t)\}
$$

ii)
c) (i) Evaluate
(4 marks)
(iii) Test for convergency, given:

$$
\int_{0}^{1} \ln x d x
$$

