THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING \& CAD

AMA 2303: CALCULUS IV

END OF SEMESTER EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Calculator
- Mathematical table

This paper consists of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

$$
w=f\{x(t), y(t)\}
$$

a) Let

$$
\begin{gathered}
f(x, y)=x^{2} y+y^{2} \\
\\
x(t)=t^{2} \quad \text { and } \quad y(t)=2 t \\
\frac{\partial w}{\partial t}
\end{gathered}
$$

Find by use of chain rule
b) Find the critical points of :

$$
f(x, y)=3 x y-x^{3}-y^{3}
$$

c) Compute the directional derivative of:

$$
\begin{gathered}
\text { at }(-2,3) \text { in the direction }
\end{gathered} \vec{u}=\frac{3}{5} i+\frac{4}{5} j
$$

d) Apply Green's theorem to evaluate

$$
\oint_{c} y^{2} d x+x^{2} d y
$$

$$
\text { Over the triangle bounded by } x=0, x+y=1 \text { and } y=0
$$

e) Determine if the following integral is convergent or divergent and if it is convergent, find its

$$
\int_{1}^{\infty} \frac{1}{x} d x
$$

value

$$
f(x, y)=x+2 y
$$

$$
x^{2}+y^{2}=1
$$

f) Find the maximum and minimum values of subject to the constraint

SECTION B (Answer any TWO questions from this section)

Question 2

$$
f(x, y, z)=x y^{2}+y z^{3}+x y^{2}
$$

a) Consider the function
i) Find the gradient vector of f at $(5,4,-1)$

$$
u=\frac{2}{\sqrt{20}} i-\frac{3}{\sim}{ }_{\sim}^{20} j \sim \sim \frac{3}{20}_{20}^{\sim}
$$

ii) Find the rate of change of f at $(4,5,-1)$ in the direction
b) A rectangular area adjacent to a stone wall is to be enclosed using a chain -link fence. Because the stone wall forms one side of the rectangle, only the three remaining sides need to be fenced. Taking the width of the area to be x and the length to be y, find the maximum area that can be enclosed by 50 metres of fence. (Use Lagrange multiplier method)

Question 3

Evaluate the integrals below
$\int_{1}^{\infty} \frac{d x}{x^{5}}$
a)
$\int_{0}^{3} \frac{d x}{\sqrt{3-x}}$
b)
$\int_{-1}^{\infty} e^{-5 x}$
c)
$\int_{0}^{1} \int_{2 x}^{2} x+y \quad d y d x$
d)

Question 4

a) Use the divergence theorem to find the outward flux of

$$
F=(y-x) i+(x-y) j+(y-x) k
$$

$$
x= \pm 1, y= \pm 1 \quad z= \pm 1
$$

Across the boundary of the cube bounded by the planes and

$$
x^{2}+y^{2} \text { over the region } R: 0 \leq x \leq 2,1 \leq y \leq 4,0 \leq z \leq 5
$$

b) Find the integral of

Question 5

Find the dimension of the box with the largest volume if the total surface area is $64 \mathrm{~cm}^{2}$

