THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN CIVIL ENGINEERING \& CAD
DIPLOMA IN ARCHITECTURE DIPLOMA IN BUILDING \& CIVIL ENGINEERING

AMA 2208: CALCULUS III

END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables/Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

$$
f(x)=\frac{\sin x-x}{\tan x-x} \text { as } x \rightarrow 0
$$

a) (i) Use L'Hospital's Rule to determine limit of the function ,

$$
x \rightarrow 2, f(x)=\frac{x^{2}-4}{x-2}
$$

(ii) Show that as , has a limiting value of 4

$$
f(x)=\frac{1}{3} x^{3}+2 x
$$

b) (i) Show that , satisfies the hypothesis of the mean value theorem on the interval $(0,3)$. And find all the values of c, in this interval
(ii) Use Taylor's series to approximate the value of sin 46° correct to six decimal places

SECTION B (Answer any TWO questions from this section)

Question 2

a) Evaluate the following

$$
\begin{equation*}
\int_{0}^{\sqrt{\left(a^{2}-x^{2}\right)}} \int_{0}^{e(x+y)} d y d x \tag{i}
\end{equation*}
$$

$$
f(x)=\frac{\sin 2 x}{\sin 5 x} \quad x \rightarrow 0
$$

(5 marks)
b) Evaluate the following:

$$
\begin{equation*}
\int_{0}^{\pi / 2} x^{4} \sin x d x \tag{9marks}
\end{equation*}
$$

Question 3

$$
z(x+y)=\left(x^{2}+y^{2}\right) \quad\left(\frac{\delta z}{\delta x}-\frac{\delta z}{\delta y}\right)^{2}=4\left(1-\frac{\delta z}{\delta x}-\frac{\delta z}{\delta y}\right)
$$

a) If , show that
(10 marks)

$$
\int y d s
$$

b) Evaluate , over the area of that part of the circle, contained in the first quadrant

Question 4

$$
f(x)=\sqrt[3]{x} \quad \sqrt[3]{1.1}
$$

a) Using , approximate the value for , using Taylor's theorem (8 marks)

$$
f=\operatorname{In}\left(x^{3}+y^{2}+z\right) \quad \frac{\delta^{3} f}{\delta x \delta y \delta z}=\frac{\delta^{3} f}{\delta z \delta x \delta y}
$$

b) Show that for the function , then

Question 5

$$
\int \frac{x^{n}}{\sqrt{a^{2}+x^{2}}} d x
$$

a) (i) Evaluate:

$$
\int \frac{x^{3}}{\sqrt{\left(3^{2}+x^{2}\right)}} d x
$$

(ii) Use the above solution in Q5 (a) (i), to solve

$$
f(x)=\sqrt{(x-1)} \quad f(x)
$$

b) Given $0 n(2,5)$ and is continuous. Use Mean Value Theorem to prove that a $\frac{13}{4}$
certain point, lies between the boundary $(2,5)$

