THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING

AMA 2208: CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables/Scientific Calculator

This paper consists of FIVE questions in two sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions.
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) Find the first derivatives for the following

$$
y=\sqrt{x^{2}+1}
$$

(i)

$$
y=\frac{4-x}{1+\frac{1}{x}}
$$

(ii)

$$
y=\cot ^{-1} \frac{1}{x^{2}}
$$

(iii)

$$
y=t^{2}-\sin t \quad x=t+\cos 2 t
$$

(iv)

$$
y=\frac{1}{x^{2}+1}
$$

b) From first principles, find the derivative of

$$
y^{3}+3 x y+x^{2}=10
$$

c) A function is given as: ; Find the equation for the following:
(i) The tangent at point $(-1,5)$
(ii) The normal to the tangent

SECTION B (Answer any TWO questions from this section)

Question 2

$$
\frac{d y}{d x}
$$

a) Find for the following:

$$
y=\cos ^{3} t, x=\sin t
$$

(i)

$$
y=\arctan x^{4}
$$

(ii)

$$
y=\frac{e^{x} \sin x}{x \operatorname{In} x}
$$

(iii)

$$
\frac{d^{2} y}{d t^{2}} \quad y=e^{-t} \operatorname{In} t
$$

b) Find given

Question3

$$
\frac{d y}{d x}
$$

a) Using logarithmic method find for:

$$
y=\frac{x^{3} e^{x^{2}}}{\sqrt{\frac{1}{x}-x^{3}}}
$$

(i)

$$
y=\theta-\cos 2 \theta \quad x=\sin 2 \theta
$$

(ii)

$$
2 x^{2}-x=8 \quad 2 x^{2}+y^{2}=10 \quad(8 \text { marks })
$$

b) Find the angle of intersection between the functions.

Question 4

$$
y^{3}=4 x \quad\left(\frac{1}{4}, 1\right)
$$

a) Find the radius of curvature of
at

$$
t=0
$$

b) Determine at the point the following:
(i) Tangent

$$
y=4 e^{2 t}, x=\frac{2}{e^{t}}
$$

(ii) Normal to the tangent in (i) above, where the function is defined as

Question 5

$$
y=x^{3}+\frac{432}{x}
$$

a) A function is of the form . Determine:
(i) Critical values
(ii) The nature of the critical values
b) The distance s for a moving object is related to time t by an expression of the form:

$$
s=\frac{t^{3}}{6}+\frac{t^{2}}{4}
$$

Find its acceleration
c) A rectangular tank of height 2 m is to be fabricated. The capacity of the tank is $10 \mathrm{~m}^{3}$.
(i) Determine the dimensions of the base if the material to be used is to be of minimum surface area.
(ii) Show that dimensions for the tank in $\mathrm{c}(\mathrm{i})$ are for the minimum surface area

