THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
DIPLOMA IN ARCHITECTURE DIPLOMA IN CIVIL ENGINEERING

AMA 2207: ORDINARY DIFFERENTIAL EQUATIONS (ODE)
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables/Calculator
- Laplace Table

This paper consists of FIVE questions in two sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions.
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) Determine Laplace transform of the following

$$
L\{\cos (-2 t)\}
$$

(i)

$$
L\left\{\frac{3}{4} t\right\}
$$

(ii)

$$
L\left\{e^{-t} \cos 3 t\right\}
$$

(iii)

$$
L\left\{\frac{5}{3} e^{-2 t} \sin 3 t\right\}
$$

(iv)

$$
\left(y^{2}-2 x\right) d x+(2 y+1) d y=0
$$

b) Given the differential equation,
(i) Test for exactness,

$$
y(0)=3 .
$$

(ii) Solve the differential equation at

$$
y^{\prime \prime}+2 y+y=\tan x
$$

c) Solve the differential equation,

SECTION B (Answer any TWO questions from this section)

Question 2

$$
y^{\prime \prime}+3 y-10 y=5 x^{2}
$$

a) Find a particular solution to the differential equation

$$
\ddot{x}+5 x+6 \dot{x}=4 t \quad \text { given that } \mathrm{t}=0, \mathrm{x}=0 \text { and } \mathrm{x}=0 .
$$

b) Use Laplace transform to solve,

Question3

$$
\left(3 x^{2} y-1\right) d x+\left(x^{3}+6 y-y^{2}\right) d y=0
$$

a) Solve the following initial value problem,

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 x=5
$$

b) Solve,

$$
\left(3 e^{x} y+x\right) d x+e^{x} d y=0
$$

c) Solve the initial value problem,

$$
\text { given } y(0)=1
$$

Question 4

a) Use Laplace transforms to determine the solution of the initial value problem, $y^{\prime \prime}-2 y+5 y=0$,

$$
\begin{equation*}
\text { given, } y(0)=-1, y^{\prime}(0)=7 \tag{10marks}
\end{equation*}
$$

$$
f(x)=x^{3}-4 x+2
$$

b) Find the Laplace transform of the function,

$$
y^{\prime \prime}-y=0
$$

c) Give the general solution of the differential equation

Question 5

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}=6 e^{2 x}
$$

a) Solve,

$$
\frac{d^{2} y}{d t^{2}}-4 x=24 \cos 2 t
$$

b) Using Laplace transform to solve the following differential equations, given

$$
\frac{d x}{d t}=4
$$

that $\mathrm{t}=0, \mathrm{x}=3$ and

$$
L^{-1}\left\{\frac{s+4}{s(s-2)}\right\}
$$

c) Evaluate the following,

