

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN ARCHITECTURE (DA 10B) DIPLOMA IN CIVIL ENGINEERING (DC 10B) DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBC 10B)

AMA 2205: CALCULUS II

END OF SEMESTER EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical tables
- Pocket Calculator

This paper consists of **FIVE** questions Answer question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1

a) Find:

$$\int (3x+4)^{2} dx$$
(i)

$$\int \frac{(x+3)}{(x^{2}+6x)^{\frac{1}{3}}} dx$$
(ii)

$$\int (1+\tan x)^{2} dx$$
(iii)

$$\int_{0}^{2} \frac{2x^{3}}{(x^{2}+1)^{2}} dx$$
(10 marks)

$$\int_{0}^{2} \frac{2x^{3}}{(x^{2}+1)^{2}} dx$$
(10 marks)
b) Evaluate:
(10 marks)

$$y = x^{2} - 7x + 6$$
(10 marks)

$$x - axis$$
(10 marks)
SECTION B (Answer any TWO questions from this section)
Question 2

a) Use trigonometric substitution to find:

$$\int \frac{dx}{x^2 \sqrt{9 - x^2}}$$
(6 marks)

b) Use integration by parts to find:

$$\int x^2 \sin x \, dx$$

c) Integrate by partial fraction:

$$\int \frac{dx}{x^2 - 4}$$
(7 marks)

Question 3

(7 marks)

$$\frac{d^2y}{dx^2} = x^2 - 1$$

- a) For every point of a certain curve, k+12y=13through the point (1, 1) and is tangential to the line k at that point (8 marks)
- b) Find the centroid of the first quadrant area bounded by the parabola $y = 4 x^2$ and the x-axis (12 marks)

Question 4

- a) Find the volume generated by revolving the plane area bounded by $y = 2x^2$ y = 2x + 4the line x = 2 (11 marks)
- b) Find the area bounded by the parabola $y = 6x x^2$ and the line y = 2x (9 marks)

Question 5

- a) Find the moment of inertia with respect to each coordinate axis of the area bounded by the curve $y = \sin x$ π and the x-axis from x = 0 to x = (15 marks)
- b) Find the moment of inertia with respect to its axis of the solid generated by revolving the area in $y^2 = 8^x$ the first quadrant bounded by the parabola , the x-axis and the line x=2 (5 marks)