THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL, MECHANICAL, ELECTRICAL \& ELECTRONICS ENGINEERING/BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONICS, BUILDING \& CONSTRUCTION

AMA 2171/AMA 4102: GEOMETRY
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

Question 1 (Compulsory - 30 Marks)

$$
\tan \theta+\cos \theta=\sec \theta \csc \theta
$$

a) Prove that

$$
\cos A=\frac{2}{5}, \tan B=\frac{5}{12}, A
$$

b) If and B being acute, find the value of

$$
\sin (A+B)
$$

$$
4 x+2 y+7=0
$$

d) Find the distance from the point $(2,1)$ to the line

$$
x=-3
$$

e) Find the equation of the curve that is the locus of all points equidistant from the line and the point $(3,0)$.
f) Find the centre of the circle and the radius of the circle given by the equation

$$
\begin{equation*}
x^{2}+y^{2}+\frac{1}{2} x-3 y-\frac{27}{16}=0 \tag{5marks}
\end{equation*}
$$

g) Give the length of a, the length of the focal chord and the equation of the parabola which is the $x=-4$ locus of all points equidistant from the point $(4,0)$ and the line

Question 2 (20 Marks)

a) Find the foci, directrices, eccentricity, length of focal chord and equation of the asymptotes of the

$$
\frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

hyperbola described by the equation
b) Express the equation of the following circle with its centre ($\mathrm{a}, 0$) and with radius a in polar coordinates.

$$
\begin{equation*}
(x-a)^{2}+y^{2}=a^{2} \tag{5marks}
\end{equation*}
$$

c) Change the following equation to an equation in rectangular coordinates

$$
\begin{equation*}
r=\frac{3}{\sin \theta-3 \cos \theta} \tag{5marks}
\end{equation*}
$$

Question 3 (20 Marks)

$$
\begin{equation*}
16 x^{2}+9 y^{2}+64-18 y-71=0 \tag{7marks}
\end{equation*}
$$

a) Discuss and sketch the graph of the equation

$$
y=x^{2}+4 x
$$

b) Discuss and sketch the parabola
c) Find the points of contact of the horizontal and vertical tangents to the curve represented by the $x=3-4 \sin \theta \quad y=4+3 \cos \theta$ parametric equation and

$$
r=2+4 \cos \theta
$$

a) Sketch the graph

$$
x^{2}+y^{2}-4 x+10 y-8=0
$$

b) Find the equation of the tangent at the point $(3,1)$ on the circle

$$
\triangle P Q R, r=5.75 \mathrm{~cm}, P=42^{\circ}, Q=65^{\circ}
$$

c) In the triangle
. Calculate length PR

Question 5 (20 Marks)

$$
5 y=12 x-33 \quad 3 x+4 y=9
$$

$$
5 y=12 x-33
$$

a) Determine whether the lines and are tangents to the circle

$$
x^{2}+y^{2}+2 x-8 y=8
$$

$$
\Delta X Y Z, X Y=3.5 \mathrm{~cm}, Y Z=4.5 \mathrm{~cm} \quad Z X=6.5 \mathrm{~cm}
$$

b) In triangle
and \quad. Calculate the size of angle Y.

$$
\begin{equation*}
\sin (x+\alpha)=\cos (x-\beta) \quad \sin (x+\alpha)=\cos (x-\beta) \tag{5marks}
\end{equation*}
$$

c) Given that . Find . Find Tan x in terms of and
d) Show that sin

