

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

Faculty of Engineering & Technology

DEPARTMENT COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY (DIT 2K 11M/ DIT 11M)

AMA 2115: MATHEMATICS FOR SCIENCE

END OF SEMESTER EXAMINATIONS

SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

Answer Booklet

This paper consist of FIVE questions in TWO sections A & B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question one 20 marks

a) Using the method of 4-bit two's complement evaluate the following

i.	5 - 14	[3Marks]
ii.	11 – 5	[4Marks]

b) Evaluate

i.	$10110_2 \times 1110_2$	[3Marks]
ii.	$1100110_2 \div 101_2$ (to 3d.p.)	[4Marks]

c) Using 4-bit two's complement method solve

i.	$0100_2 - 1101_2$	[3Marks]
ii.	5 – 3	[4Marks]

SECTION B (ANSWER ANY TWO QUESTIONS)

Question two

a)	Differentiate between weighted and Non-weighted codes	[4Marks]	
b)	Represent the binary equivalent of decimal number 173 in Excess 3.	[3Marks]	
c)	Solve 793 – 705 in BCD	[5Marks]	
d)	Show that $\dot{A} + \dot{B} = A \cdot B$ [8Marks]		
Qu	iestion 3		
a)	Draw a truth table for $N \cdot M \cdot (P+N)$	[4Marks]	
b)	Form a system of NAND gates that can perform the operation of AND gate	[4Marks]	
c)) Draw the logic circuit for the Boolean expression $(A + C) \cdot (AD + A \cdot D) + A \cdot C + C$ and represent a simple circuit with equivalent output and provide it's truth table. [12Marks]		
Qu	lestion 4		
a)	Outline the differences between ASCII and EBCDIC alphanumeric coding systems in use today		
b)	6Mark) Draw the symbol of a three input AND operator and list all the possible outputs. [4Mark] Description of a three input AND operator and list all the possible outputs.		
C)	Rewrite the signals provided below with both even and odd parity check.		
	i. 1011110 ii. 1101001	[2Marks] [2Marks]	

Code the decimal number equivalent to the 11000100₂ in:

- i. Gray code
- ii. 5211 Code

Question 5

a) Determine the inverse matrix of $\begin{pmatrix} -26\\ 2-2 \end{pmatrix}$

[2Marks]

- b) Kamau bought two t-shirts and three pairs of jeans and gave out £100 but he received a £36 as his change. Peter bought five t-shirts and two pairs of jeans at £61. Use matrices to calculate the cost of one shirt and a pair of jean
 [4Marks]
- **c)** Use matrices to determine the solution set for the following system of equations.

4x - 2y - 3z = 8	
5x + 3y - 4z = 4	
6x - 4y - 5z = 12	[14Marks]