

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC) DIPLOMA IN ARCHITECTURE (DA)

AMA 2112: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) Express $2 \cos \theta+\sin \theta$ form $R \sin (\theta+\alpha)$ and hence solve $2 \cos \theta+\sin \theta=1 \underset{\text { for }}{ } O^{\circ} \leq \theta \leq 360^{\circ}$

$$
z^{2}+j-1=0 \quad r=(\cos \theta+\sin \theta)
$$

b) (i) Solve the equation in the form
(ii) Represent the solution obtained in b(i) on an Argand diagram.
(12 marks)

Question Two

a) Solve the following:

$$
2 x^{0.5}=0.45
$$

(i) using logarithms show all your working.

$$
\log (x-1)+\log (x+1)=\log (x+5)+2
$$

(ii)
(10 marks)
b) An experiment was performed and the following results obtained:

$$
y=k x^{n}
$$

where k and n are constant.

x	3.5	4.4	6.6
y	183	226	310

i) Determine the law graphically
ii) Find the value of y when $x=6$
(10 marks)

Question Three

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

a) Prove that
b) Prove the equation for (7 marks)
c) Construction blocks are supplied weekly as 4 thousand tones, 1.2 thousand tones, 0.36 thousand tones and so on.
(i) Find the supply during the $10^{\text {th }}$ week
(ii) The week when only 0.05 thousand tones will be supplied.

Question Four

$$
Z_{1}=4+2 j Z_{2}=j Z_{3}=4-j
$$

a) Given
$Z_{4} \quad r \angle \theta \quad Z 4=\frac{Z_{2} \times Z_{3}}{Z_{1}}$
(i) Find in the form where Z_{4}
(ii) Represent on an Argand diagram.
(10 marks)
b) A surveyor is 100 m downslope from the foot of a tower on a sloping ground of slope angle $10^{\circ} . \mathrm{He}$ measures the angle of elevation from the ground to the top of the tower as 15°, find the height of the tower.
(10 marks)

Question Five

a) Solve the equation:

$$
\log 2 x=\log (4 x-1)-\log 3 x
$$

b) A polygonal model has 18 sides forming an arithmetic progression of perimeter 117.75 mm . The $9^{\text {th }}$ side is 3 times the shortest side. Find the dimension of the longest side.
c) A surveyor travels $30 \mathrm{~m} 540^{\circ} \mathrm{E}$ to station A, 100 m to station $\mathrm{B} 50^{\circ} \mathrm{W}$ and finally 150 m to station C N20 ${ }^{\circ}$ E.
Find:
(i) The distance of the surveyor from the starting point
(ii) The bearing of the surveyor from the North.

