THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering \& Technology
DEPARTMENT COMPUTER SCIENCE \& INFORMATION TECHNOLOGY
DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY
DICT 2K 11M/DICT 11M
AMA 2110: COMPUTATIONAL MATHEMATICS
END OF SEMESTER EXAMINATIONS
SERIES: DECEMBER 2011
TIME: 2 HOURS

[^0]
SECTION A (COMPULSORY)

QUESTION ONE (20 MARKS)

a) Define the term 'set'
b) Define a Venn diagram
c) Find the values of X and Y in the following linear system using Cramer's rule

```
5X-4Y=2
6X-5Y=1
```

d) What is the complement a of a null set and state why
e) State the laws of Boolean algebra
f) Given $\bar{A}=\{1,2,3,4\}, B=\{3,4,5\}$ and $C=\{5,6,7\}$ prove the distribution law
g) Given the logic circuit below, give its Boolean expression

B
h) Draw the truth tables for AND, OR and NOT logical operations
i) Perform the following binary addition
$1010+0111$

SECTION B (ANSWER ANY TWO QUESTIONS)

QUESTION 2 (20 MARKS)

a) Define Boolean algebra
b) Construct a truth table for the Boolean functions with three inputs XYZ and derive the following functions: $\mathrm{F}=\mathrm{XYZ}, \mathrm{F}=\mathrm{XY}+\mathrm{Z}$ and $\mathrm{F}=\mathrm{X}+\mathrm{YZ}$
c) Draw a simple analogy of the AND gate and construct its truth table
d) Express the decimal number 567:

i	in binary	[1 marks]
ii in octal	[1marks]	

e) Draw the circuit symbols of NAND gate and NOR gate

QUESTION THREE (20 MARKS)

a) Given the following Universal set U and its two subsets P and Q , where

$$
\begin{aligned}
& \mathrm{U}=\{\mathrm{x}: \mathrm{x} \text { is an integer, } 0<=\mathrm{x}<=10\} \\
& \mathrm{P}=\{\mathrm{x}: \mathrm{x} \text { is prime number }\} \\
& \mathrm{Q}=\left\{\mathrm{x}: \mathrm{x}^{2}<75\right\}
\end{aligned}
$$

(i) Draw a VENN diagram for the above
(ii) List the elements in $\mathrm{P}^{\prime} \cap \mathrm{Q}$
b) Convert 2AE hexadecimal to denary

c) Give the Boolean expression of the above logic circuits
d) Give the purpose of constructing truth tables
e) Give the number of all possible output combinations with two, three and four inputs respectively

QUESTION FOUR (20 MARKS)

a) Differentiate between a set and a subset
b) Draw a logic circuit for the expression.

$$
\bar{A} B \cdot C+A \cdot \bar{B} \cdot C+A \cdot \overline{B \cdot C}
$$

c) Using cramer's rule, find the values of X, Y and Z

$$
\begin{aligned}
& 2 x-y+3 z=-3 \\
& -x-y+3 z=-6 \\
& X \quad-2 y-z=-2
\end{aligned}
$$

d) Differentiate between odd parity bit and even parity bit
e) Differentiate between binary and decimal
f) State any four types of binary codes

QUESTION FIVE (20 MARKS)
a) Define equivalent matrices
b) Compute the determinant of the following matrix

$$
\left(\begin{array}{ccc}
-5 & -1 & 1 \\
10 & 2 & 3 \\
1 & -2 & 6
\end{array}\right)
$$

c) (i) 567 octal to binary
(ii) 684 decimal to binary
d) Draw the circuit symbol for OR gate and construct its truth table with three inputs.
e) Draw the logic circuit for the following expression

Z=A.B+C.D
f) Define a matrix
g) Express the number 747_{8} in: Hexadecimal

[^0]: Instructions to Candidates:
 You should have the following for this examination

 - Answer Booklet

 This paper consist of FIVE questions in TWO sections A \& B
 Answer question ONE (COMPULSORY) and any other TWO questions
 Maximum marks for each part of a question are as shown
 This paper consists of FOUR printed pages

