

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) (A Centre of Excellence)

Faculty of Engineering &

Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

DIPLOMA IN INFORMATION TECHNOLOGY DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY (DIT/J12 EV DICT/J12 EV)

> AMA 2110: COMPUTATIONAL MATHEMATICS AMA 2115: MATHEMATICS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet

Question One (20 marks)

a) Express the following signals with even and odd parity signal check.

i)	10110111			(2 marks)
ii)	11010000			(2 marks)

- b) The signal 01101101 is transmitted with even parity. Determine if its error free signal, explain your answer. (3 marks)
- <u>c)</u>State the **THREE** main differences between ASCII and EBCDIC.

<u>d</u>) What is the inverse matrix of $A = \begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & -2 \\ -2 & -2$	$\begin{pmatrix} 3 & 4 \\ 1 & 2 \end{pmatrix}$ -4 5	(2 marks)
(1 3) (<u>e)</u> Given and i) 2B – 3A	, what i:	(3 marks)

<u>ii)</u>2A + 3AB

SECTION B (Answer Any Two Questions)

Question Two (20 marks)

 a) Convert the following as directed: i) 3B7₁₆ to decimal ii) 247 to Binary iii) 4733 to Hexadecimal 	(2 marks) (3 marks) (2 marks)
 b) Evaluate the following in 2's complement with 4 bits: i) 1011₂ - 1100₂ ii) 11 - 14 	(2 marks) (3 marks)
 c) Using 8 bits, calculate the following: i) 87 − 93 in 1's complement ÷ 	(3 marks)
ii) 1011101_2 10101_2 d) Represent 59 in Excess 3 code	(3 marks) (3 marks)

Question Three (20 marks)

a) A police man practiced shooting at the shooting range and used 100 rounds, if 61 of them hit the target, determine the probability that the officer will shoot at least 6 robbers using 8 rounds.

(5 marks)

(3 marks)

(5 marks)

- b) A glass jar contains 5 green, 6 red, 8 blue and 3 yellow marbles. Marbles are picked at random and without replacement at each selection.
 - i) If 3 marbles are picked at random, what is the probability of choosing 2 red and a green marble? (3 marks)

ii) What is the probability of not selecting blue marble if 2 marbles are picked? **(3 marks)**

- c) Usually DT-Dobie sales 2 cars per day. What is the probability a maximum of 3 cars will be sold tomorrow? (4 marks)
- d) The following are continuous assessment marks for mathematics subject for eight students: 12, 18, 16, 21, 10, 13, 17 and 19.
 - i) Determine the mean score
 - ii) What is the variance of the student's score.

Question Four (20 marks)

- a) Complete the table of binary coded decimals below.
- b)

Decimal	5211	Gray Code	Excess 3
	1110110		
			10110101

b) Evaluate the following 354-497 in BCD.

c) Represent the decimal number 713 in gray code.

Question Five (20 marks)

- a) Draw the symbol of a 3 input NOR operator and determine its truth table. (4 marks)
- b) Using NAND operator only develop a circuit to perform the function of a two input or operator.

(4 marks)

	_	_
$A \bullet B \bullet C + A \bullet$	$B \bullet C + A \bullet B \bullet$	C = Q

c)	Given the Boolean expression	
	i) Simplify the expression for Q.	(4 marks)
	ii) Implement the simplified expression into a logic circuit	(4 marks)
	iii) Determine the truth table for all possible values of input	(4 marks)

Page 3

(2 marks) (3 marks)

(12 marks)

(4 marks)

(4 marks)