THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING
AMA 2109: APPLIED MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATON
SERIES: OCTOBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

a) A solid object is thrown horizontally from the top of a hill 20 m high. Find the distance the object will fall from the hill if the object had an initial velocity of $25 \mathrm{~ms}^{-1}$ (Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$). (8 marks)
b) A car of mass $1.5 \times 103 \mathrm{~kg}$ starts from rest and accelerates uniformly to a speed of $50 \mathrm{kmh}^{-1}$ covering a distance of 40 m . Determine;
i) The average driving force
ii) The time taken to cover the attained distance
c) A pin-jointed structure is as shown in figure 1.
i) Find the forces in the members of the structure
ii) State whether each force in $\mathrm{c}(\mathrm{i})$ is tensile or compressive

SECTION B (Answer any TWO questions from this section)

Question 2

$$
\binom{-30}{40}
$$

$$
\binom{50}{0}
$$

a) A force of N acts on a body of mass 10kg. the body then moves at a velocity of ms^{-1} Find after 2 seconds;
i) Magnitude of the velocity
ii) Direction in which the velocity acts
b) A lorry of mass $2,000 \mathrm{~kg}$ is towing a car of mass 500 kg . Find the braking force of the lorry and force in the tow bar if towing was being carried out at $0.8 \mathrm{~ms}^{-2}$.
c) A simple pendulum of length 50 cm has an amplitude of 6.0 cm . Find;
i) Maximum acceleration
ϕ
ii) Velocity of the $\left(\right.$ take $\left.g=10 \mathrm{~ms}^{-2}\right)$

Question 3

a) A body of mass 5 kg lies on a rough horizontal surface. The body is connected by a light string cover a smooth pulley to another body of mass 2 kg which hangs freely in a vertical direction. Find:
i) Tension in the string
ii) Acceleration of the body when the system is released (take friction resistance of 10 N) (Assume g = 9.8 ms^{-2})
(8 marks)
b) An object is thrown from a building at a velocity of $40 \mathrm{~ms}^{-1}$ at an angle of 30° to the horizontal. Find;
i) Horizontal range for the object
ii) Maximum height attained
iii) Height of the object after 2 seconds (take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)

Question 4

a) A lift of mass 400 kg is ascending to the top last floor of a building. The lift is carrying a 50 kg load and is decelerating at $1.5 \mathrm{~ms}^{-2}$. Find;
i) Tension in the lift cable
ii) The normal contact force between the man and the lift floor. (Take $g=10 \mathrm{~ms}^{-2}$ and neglect resistance to motion)
b) A uniform ladder 5.0 m long has a mass of 30 kg . The ladder rests with its upper end against a smooth vertical wall and its lower end on a rough horizontal surface. The ladder is inclined at 50° to the horizontal. A boy of mass 40 kg is sitting on the ladder 3 m above the ground. Find;
i) Magnitude of the force
ii) Direction in which force acts at the bottom of the ladder
iii) Coefficient of friction between the ground and the ladder (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$) (12 marks)

Question 5

a) An object of mass 8 kg is acted on by coplanar forces $5 \mathrm{~N}, 9 \mathrm{~N}$ and 4 N at bearings of $120^{\circ}, 45^{\circ}$ and 210° respectively. Find;
i) Acceleration of the object
ii) Direction of the acceleration
b) The length and amplitude of a simple pendulum are 70 cm and 5 cm respectively. Calculate;
i) Maximum acceleration attained
ii) Velocity of the bob (Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)

