

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

AMA 2109: APPLIED MATHEMATICS

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket Calculator

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1

- a) A solid object is thrown horizontally from the top of a hill 20m high. Find the distance the object will fall from the hill if the object had an initial velocity of 25ms⁻¹ (Take g=9.8ms⁻²). (8 marks)
- b) A car of mass 1.5 x 103kg starts from rest and accelerates uniformly to a speed of 50 kmh⁻¹ covering a distance of 40m. Determine;
 - i) The average driving forceii) The time taken to cover the attained distance (8 marks)
- c) A pin-jointed structure is as shown in figure 1.
 - i) Find the forces in the members of the structure
 - ii) State whether each force in c(i) is tensile or compressive (14 marks)

SECTION B (Answer any TWO questions from this section)

Question 2

	(-30)		(50))
	40		0)
ce of		N acts on a body of mass 10kg. the body then moves at a velocity of		ms ⁻¹

- a) A force of N acts on a body of mass 10kg. the body then moves at a velocity of ms⁻¹ Find after 2 seconds;
 - i) Magnitude of the velocity
 - ii) Direction in which the velocity acts
- b) A lorry of mass 2,000kg is towing a car of mass 500kg. Find the braking force of the lorry and force in the tow bar if towing was being carried out at 0.8ms⁻². (7 marks)
- c) A simple pendulum of length 50cm has an amplitude of 6.0cm. Find;
 - i) Maximum acceleration
 - ii) Velocity of the (take g = 10 ms^{-2})

Question 3

- a) A body of mass 5kg lies on a rough horizontal surface. The body is connected by a light string cover a smooth pulley to another body of mass 2kg which hangs freely in a vertical direction. Find:
 - i) Tension in the string
 - ii) Acceleration of the body when the system is released (take friction resistance of 10N) (Assume $g = 9.8 \text{ms}^{-2}$) (8 marks)
- b) An object is thrown from a building at a velocity of 40ms⁻¹ at an angle of 30° to the horizontal. Find;
 - i) Horizontal range for the object
 - ii) Maximum height attained

(7 marks)

(6 marks)

iii) Height of the object after 2 seconds (take $g = 10 \text{ ms}^{-2}$)

Question 4

- a) A lift of mass 400kg is ascending to the top last floor of a building. The lift is carrying a 50kg load and is decelerating at 1.5ms⁻². Find;
 - i) Tension in the lift cable
 - ii) The normal contact force between the man and the lift floor. (Take $g = 10 \text{ms}^{-2}$ and neglect resistance to motion) (8 marks)
- b) A uniform ladder 5.0m long has a mass of 30kg. The ladder rests with its upper end against a smooth vertical wall and its lower end on a rough horizontal surface. The ladder is inclined at 50° to the horizontal. A boy of mass 40kg is sitting on the ladder 3m above the ground. Find;
 - i) Magnitude of the force
 - ii) Direction in which force acts at the bottom of the ladder
 - iii) Coefficient of friction between the ground and the ladder (Take $g = 10ms^{-2}$) (12 marks)

Question 5

- a) An object of mass 8kg is acted on by coplanar forces 5N, 9N and 4N at bearings of 120°, 45° and 210° respectively. Find;
 - i) Acceleration of the object
 - ii) Direction of the acceleration

(10 marks)

- b) The length and amplitude of a simple pendulum are 70cm and 5cm respectively. Calculate;
 - i) Maximum acceleration attained
 - ii) Velocity of the bob (Take $g=9.8ms^{-2}$)