THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN BUILDING \& CIVIL ENGINEERING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

AMA 2108: CALCULUS I

SPECIAL/SUPPLEMENTARY EXAMINATON

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Pocket/Scientific Calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1

$$
y=\frac{1}{x-8} \quad x=2 \quad x=4
$$

a) Working from first principles, find the derivative of at and (6 marks)

$$
\frac{d y}{d x}
$$

b) Find given

$$
y=x^{2} \sin x+2 x \cos x-2 \sin x
$$

$$
\begin{equation*}
y=1_{n}(x+3)^{2} \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
y=1 / 4 \sinh 2 x-1 / 2 x \tag{12marks}
\end{equation*}
$$

(iii)
c) A cylindrical container has a volume of $64 \mathrm{~cm}^{3}$. Find the dimensions so that the amount (surface area) of the container is a minimum where:
The container is an open cup

$$
\frac{d y}{d x} \quad x=\theta, y=1-\cos \theta .
$$

d) Find given

SECTION B (Answer any TWO questions from this section)

Question 2

$$
c=\sqrt{t}, y=t-1 / \sqrt{t}
$$

a) A curve is expressed parametrically as . Find the equation of the tangent to the curve at the point where $t=4$.

$$
y^{2}=11 x
$$

b) Find the curvature of a parbola at the point $(3,6)$.

Question 3

$$
y=2 x^{3}-9 x^{2}+12 x
$$

Determine the turning points for the curve
. Hence sketch the graph of the curve.
(20 marks)
Question 4

$$
s=\frac{1}{8} t^{3}+\frac{1}{2 t^{2}} .
$$

a) A car starts from rest and moves a distance, S meters in t seconds where

Find:
(i) The initial acceleration
(ii) The acceleration after two seconds. (6 marks)

$$
\frac{d y^{2}}{d x^{2}}
$$

b) Find for the following $y=e^{x} \sin 3 x$
(i)
$y=\arcsin (1+x)$
(ii)

Question 5

$$
\frac{d y}{d x} \quad y=\tan ^{-1} e^{x}
$$

a) Find given

$$
y-x^{3}-4 x^{2}+10
$$

b) Find the equation for the normal to

$$
\text { at }(2,2)
$$

c) Water is running out of a conical funnel at a rate of $1 \mathrm{~cm}^{3} / \mathrm{sec}$. The radius of the top of the funnel is 4 cm and height of the funnel is 10 cm . Determine the rate at which the radius of the water surface is decreasing when it is 3 cm from the top of funnel.

