

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN ARCHITECTURE

DIPLOMA IN BUILDING & CIVIL ENGINEERING

AMA 2106: GEOMETRY

END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical tables
- Scientific calculator

This paper consists of **FIVE** questions Answer any **THREE** questions Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages

$$2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A+B}{2}\right) = \sin A + \sin B$$
a) Prove
b) Solve the equation;
(6 marks)
(8 marks)

b) Solve the equation;

$$\cos 2\theta - \cos \theta = 0$$

(8 marks)

(6 marks)

- c) A tower 10m high is constructed on a hill. The angle of depression to a beacon in the field is found to be 24°. The angle of depression from the foot of the tower to the same beacon is 10°. Determine;
 - (i) The height of the hill
 - The distance between the beacon and the hill (ii)

Question 2 (20 marks)

- a) Three forces acting at a point are 30N at 30°, 100N at 150° and 150N at 300° from the horizontal axis in anticlockwise direction. Determine:
 - (i) The resultant force
 - The direction in which the resultant force acts. (10 marks) (ii)
- b) Three forces act at a point. They are given as follows:

$$p = 4i + 3j - 2k \qquad q = 2i - j + 3k$$
$$r = 2i + 2j$$

Find (i)

p and q

(ii) The angle between **Question 3 (20 marks)**

> a = 2i - 4j + ka-3i+2k

a)

$$\left| \begin{array}{c} a \\ a \\ a \end{array} \right| = \left| \begin{array}{c} b \\ a \end{array} \right|$$

Determine (i)

Page 2

(10 marks)

	a×b	
	(ii)	(9 marks)
b)	A piece of wood is sliced off a circular pole 5m long along its entire length.	The maximum
	thickness of the piece is 0.07m. Find the volume of the offcut	(5 marks)
c)	An object is displaced from point A of coordinates (2,4,3) to point Q of co-ordian $F = 3i + 2j - k$	tes (5,2,-1). The

. Find work done by the force force causing the displacement is given as (6 marks)

Question 4 (20 marks)

 $R\cos(\theta + \alpha)$ $2\cos\theta - 4\sin\theta$ a) Express in the form and hence solve the equation; $3\sin\theta + 4\cos\theta = 5\sin\theta + 1$ $O^{\circ} \leq \theta \leq 360^{\circ}$ for (10 marks)

b) A power piton 30m high stands on a sloping ground. The angle of the ground is 15°. The angle of elevation to the top of the piton point A is 25° and point A. (10 marks)

Question 5 (20 marks)

 $Co+^{2}\left(\frac{90-Q}{2}\right)=\frac{1+\sin\theta}{1-\sin\theta}$ a) Show that (8 marks)

- b) A surveyor is at station P N30°W from the foot of an electric pole. The angle of elevation to the top of the pole is 18°. The surveyor moves to station Q N40°E from the foot of the pole and find the angle of elevation to the top of the pole to be 22°. If the distance between the foot of the pole and station P is 100m find;
 - The height of the pole (i)
 - Distance between the pole and station Q (ii)
 - (iii) Distance between station P and station Q

(12 marks)