THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING DIPLOMA IN ARCHITECTURE

DIPLOMA IN BUILDING \& CIVIL ENGINEERING
AMA 2106: GEOMETRY
END OF SEMESTER EXAMINATION
SERIES: APRIL 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical tables
- Scientific calculator

This paper consists of FIVE questions
Answer any THREE questions
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

Question 1 (20 marks)

$$
2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A+B}{2}\right)=\sin A+\sin B
$$

a) Prove
b) Solve the equation;

$$
\cos 2 \theta-\cos \theta=0
$$

c) A tower 10 m high is constructed on a hill. The angle of depression to a beacon in the field is found to be 24°. The angle of depression from the foot of the tower to the same beacon is 10°. Determine;
(i) The height of the hill
(ii) The distance between the beacon and the hill

Question 2 (20 marks)

a) Three forces acting at a point are 30 N at $30^{\circ}, 100 \mathrm{~N}$ at 150° and 150 N at 300° from the horizontal axis in anticlockwise direction. Determine:
(i) The resultant force
(ii) The direction in which the resultant force acts.
b) Three forces act at a point. They are given as follows:

$$
\begin{gathered}
\underset{\sim}{p}=4 \underset{\sim}{i}+\underset{\sim}{\underset{\sim}{r}} \underset{\sim}{r}-2 \underset{\sim}{r} \underset{\sim}{k} \underset{\sim}{i}+2 \underset{\sim}{\sim} \underset{\sim}{j} \underset{\sim}{j} \underset{\sim}{i}-\underset{\sim}{j}+3 \underset{\sim}{k} \\
\mid \underset{\sim}{p}-\underset{\sim}{q}-\underset{\sim}{r}
\end{gathered}
$$

Find (i)

$$
\text { pand } q
$$

(ii) The angle between

Question 3 (20 marks)

$$
\underset{\sim}{a}=2 \underset{\sim}{i}-4 \underset{\sim}{j}+\underset{\sim}{k} \quad \underset{\sim}{a}-3 \underset{\sim}{i}+2 \underset{\sim}{k}
$$

a)

$$
|\underset{\sim}{a}-\underset{\sim}{b}|
$$

Determine (i)

$$
\underset{\sim}{a} \times \underset{\sim}{b}
$$

(ii)
b) A piece of wood is sliced off a circular pole 5 m long along its entire length. The maximum thickness of the piece is 0.07 m . Find the volume of the offcut
c) An object is displaced from point A of coordinates $(2,4,3)$ to point Q of co-ordiantes $(5,2,-1)$. The

$$
F=3 \underset{\sim}{i}+2 j-\underset{\sim}{k}
$$

force causing the displacement is given as . Find work done by the force

Question 4 (20 marks)

$$
2 \cos \theta-4 \sin \theta \quad R \cos (\theta+\alpha)
$$

a) Express in the form and hence solve the equation;

$$
\begin{equation*}
3 \sin \theta+4 \cos \theta=5 \sin \theta+1 \text { for } O^{\circ} \leq \theta \leq 360^{\circ} \tag{10marks}
\end{equation*}
$$

b) A power piton 30 m high stands on a sloping ground. The angle of the ground is 15°. The angle of elevation to the top of the piton point A is 25° and point A .
(10 marks)

Question 5 (20 marks)

$$
\operatorname{Cot}^{2}\left(\frac{90-Q}{2}\right)=\frac{1+\sin \theta}{1-\sin \theta}
$$

a) Show that
b) A surveyor is at station $\mathrm{P} \mathrm{N} 30^{\circ} \mathrm{W}$ from the foot of an electric pole. The angle of elevation to the top of the pole is 18°. The surveyor moves to station Q $N 40^{\circ} \mathrm{E}$ from the foot of the pole and find the angle of elevation to the top of the pole to be 22°. If the distance between the foot of the pole and station P is 100 m find;
(i) The height of the pole
(ii) Distance between the pole and station Q
(iii) Distance between station P and station Q

