

THE TECHICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN ARCHITECTURE (DA 12S)
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 12S)

AMA 2106: ALGEBRA
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Tables

This paper consists of FIVE questions.

Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) An assembly hall is designed to have 25 polygonal sides with length in an A.P and a perimeter of 1100 m . The longest side is 10 times the shorted side. Determine the fifth side.
(5 marks)
b) Due to improving technology, the cost of maintaining an excavator forms the following geometric series; k£800, k£480, k£288.

Find to the nearest $\mathrm{k} £$
(i) The expected expenditure over the first 10 years
(ii) The total possible expenditure if the situation were to continue forever.
(5 marks)

$$
\left(2+4 \frac{x}{y}\right)^{15}
$$

c) (i) Find the $10^{\text {th }}$ term in the binomial expansion of
$(1-8 x)^{1 / 2} \quad x^{3}$
(ii) Expand up to the term containing
$x=\frac{1}{100}$
$\sqrt{23}$
(iii) By putting in the expansion obtained in (c) (iii) determine the value of correct to 4 decimal places.

Question Two

a) A contractor borrows Ksh. 45,000 and repays in 25 equal installments including 5\% interest. Determine the total interest paid if the interest is calculated based on the outstanding balance.
(8 marks)

$$
Z_{1}=3-2 j, Z_{2}=1+4 j \quad Z_{3}=2-2 j \quad \frac{Z_{1} \times Z_{2}}{Z_{3}}
$$

b) Given and evaluate in polar form. (5 marks)
c) A surveyor travels $15 \mathrm{~km} 540^{\circ} \mathrm{E}$ followed by $50 \mathrm{KM} \mathrm{N} 60^{\circ} \mathrm{E}$ then $50 \mathrm{~km} \mathrm{~N} 30^{\circ} \mathrm{E}$. Using complex number method determine:
(i) The distance the surveyor is from the starting point
(ii) The direction of the surveyor at the final station from the starting point

Question Three

a) Solve the following simultaneously:
$a+b+2 c=-3$
$3 a-2 b+c=6$
$4 b-3 a-5 c=6$
b) Find the value of x which satisfies the equation:

$$
25^{x}-5^{x+2}+100=0
$$

$\frac{1}{\sqrt[4]{1-x}} \quad x^{3} \quad \frac{1}{\sqrt[4]{80}} \quad x=\frac{1}{81}$
c) Expand up to the term containing and hence solve by putting in the expansion obtained. Give answer correct to 4 decimal places.

Question Four

	$2 \cos x+\sin x$	$R \cos (x-\alpha)$	$2 \cos x+\sin x=1$	$0 \leq x \leq 360^{\circ}$
a) Express	in the form	. Hence solve	for	
				(8 marks)
	$z^{2}+8=0$		$x+y i$	

b) (i) Solve the equation expressing the answer in the form
(ii) Represent the roots obtained in b(i) on an Argand diagram.
(12 marks)

Question Five

a) The radius of a cylinder is measured 1% too low and the height 0.5% too high. Find the effect caused to the surface area.
(7 marks)
b) A surveyor moves $30 \mathrm{~km} \mathrm{~S} 60^{\circ} \mathrm{E}$ followed by $50 \mathrm{~km} \mathrm{~N} 40^{\circ} \mathrm{E}$ and then $60 \mathrm{~km} \mathrm{~N} 30^{\circ} \mathrm{W}$. Find using complex number:
(i) The distance the surveyor is from the starting point
(ii) The direction the surveyor is at the final point.

$$
x^{-0.45}=0.25
$$

c) Solve using logarithms.

