

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL & AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING (PLANT) DIPLOMA IN AUTOMOTIVE ENGINEERING

AMA 2105: ENGINEERING MATHEMATICS II

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012

TIME: 2HOURS

INSTRUCTION TO CANDIDATES

You should have the following for this examination

- Answer booklet
- Scientific Calculator

This paper consists of **FIVE** questions. Attempt any **THREE** questions Maximum marks for each part of a question are as shown. This paper consists of **THREE** printed pages

QUESTION ONE (20 MARKS)

a) Prove the following hyperbolic identities $\cosh^2 x - \sinh^2 x = 1$	
(i) $\sinh 2x = 2 \sinh x \cosh x$	(3 marks)
(ii)	(3 marks)
$\cosh 2x = 2\cosh^2 x - 1$ (iii)	(3 marks)
b) Express the following in the form a +ib $z = \frac{1}{2+3i} + \frac{1}{1-2i}$	
(i)	(3 marks)
$z = \frac{2+3i}{i(4-5i)} + \frac{2}{i}$	
(ii) $3\cosh 2x = 3 + \sinh 2x$	(3 marks)
c) Solve for the real values of x	(5 marks)
QUESTION TWO (20 MARKS)	
a) Differentiate with respect to <i>x</i> : $y = e^{3x} \sin 4x$	
i)	(3 marks)
$y = \frac{\sin 2x}{2x + 5}$	
ii) $y = In(\sin 3x)$	(3 marks)
iii)	(3 marks)
$y = e^{-2mx} \sin 4mx \qquad \qquad \frac{d^2y}{dx^2} + 4m\frac{dy}{dx} + 3$	$30m^2 y = 0$
b) (i) Show that is a solution of the equation	(8 marks)
$y = x^3 \sin 5x$ c) Differentiate with respect to x	(3 marks)
QUESTION THREE (20 MARKS)	
a) (i) Determine, algebraically from first principles the gradient of the curv point P where $x = -1.6$ <i>dy</i>	$y = 5x^{2} + z$ ye of at the (6 marks)
$y = -2x^4 - 3x^3 + 4x - x + 5 \qquad \qquad$	

(ii) If , obtain an expression for and hence calculate the value of

$$\frac{dy}{dx}$$

at x = -3 (4 marks)
 $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$
b) (i) Show that (7 marks)
 $5(\cos 225^\circ + i \sin 225^\circ)$
(ii) Express in the form $a + ib$ (3 marks)

QUESTION FOUR (20 MARKS)

a) Determine the following integrals (12 marks)

$$\int (1-4x)^2 dx$$
(i)

$$\int 3\sin(2x+1) dx$$
(ii)

$$\int (3-2x)^{-5} dx$$
(iii)

$$\int \sqrt{3-4x} dx$$
(iv)
b) Integrate the following integral by partial fractions: (8 marks)

$$\int \frac{5x+2}{3x^2+x-4} dx$$

QUESTION FIVE (20 MARKS)

a) Calculate the areas bounded by the curves (10 marks)

$$y = 3x^2 + 14x + 15$$

(i) , the x-axis and ordinates at $x = -1$ and $x = 2$
 $y = -6x^2 + 24x + 10$,
(ii) the x-axis and the ordinates $x = 0$ and $x = 4$
b) Evaluate each of the following definite integrals
 $\int_{0}^{\frac{\pi}{2}} (\sin x - \cos x) dx$
(i) $\int_{0}^{1} e^{2x} dx$
(ii) (3 marks)

 $\int_{2}^{4} 3x^{5} dx$ (iii)

(3 marks)