THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

DIPLOMA IN SCIENCE \& LABORATORY TECHNIQUES

AMA 2104: CALCULUS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2011
TIME: 2 HOURS

[^0]
QUESTION ONE (30 MARKS)

a) (i) Make y, the subject of the following
$r=\frac{a y^{2}}{y^{2}+b}$
$(3+x)^{6}$
(ii) Expand upto the term x^{4}, hence evaluate (3.003) ${ }^{6}$ correct to 3 decimal places
marks)
(iii) A piece of wire is folded into a rectangle whose dimensions are such that its length is 4 cm and Longer than its width. The area of the rectangle so formed 21 cm 2 . Determine:
I. The dimension of the rectangle
(3 marks)
II. The perimeter of the rectangle
b) Using first principle, differentiate

$$
y=x^{-2}+2
$$

c) The table shows the distribution of masses of 100 first year medical students.

Mass kg	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$
Frequency	9	12	22	28	19	10

Determine:-
(i) The mean to the nearest kg.
(ii) The standard deviation
(6 marks)

QUESTION TWO (20 MARKS)

a) Differentiate with respect to x

$$
y=e^{x} \cos x
$$

(i)

$$
\begin{equation*}
y=\frac{\operatorname{In} x}{\sin x} \tag{5marks}
\end{equation*}
$$

(ii)

$$
y=2 x^{3}-2 x^{2}-10 x-8
$$

b) Given the function

Determine;
(i) The turning points (6 marks)
(ii) The normal and tangent equations at (1,0)
(4 marks)

QUESTION THREE (20 MARKS)

a) Find for the given parametric equations

$$
\begin{aligned}
& X=\frac{2 t-1}{1-t} \\
& y=t^{2}+1
\end{aligned}
$$

$$
\begin{align*}
& x=\cos 2 t \tag{i}\\
& y=\sin t
\end{align*}
$$

(ii)

$$
\int_{2}^{4} \frac{x^{2}}{4}+x^{2}+1 d x
$$

b) (i)
(ii) Determine the area bounded by the curve

$$
y=3 x^{2}+6 x-8
$$ the x - axis and the ordinates $\mathrm{x}=1$ and $\mathrm{x}=3$

QUESTION FOUR (20 MARKS)

$$
Z=(2 x-y)(x+3 y)
$$

a) If

Determine:-

$$
\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \text { and }
$$

b) The distance S, metres, moved by a particle along a straight line after t, seconds in motion is given by $S=8+10 t^{2}-3 t^{3}$

Find:
i) The distance moved by the end of $t=2$
(3 marks)
ii) The velocity of the particle at $\mathrm{t}=2$
iii) The acceleration of the particle at $\mathrm{t}=2$
iv) The value of t when the particle attains maximum velocity
(3 marks)
(3 marks)
(3 marks)
c) Integrate
$\int_{-4}^{4} \frac{x^{2}+6 x+5}{x+1}$
(4 marks)

QUESTION FIVE (20 MARKS)

a) A bag contains 6 red balls and 4 green balls, one ball is drawn out of the bag at random and not replaced. Draw a tree diagram to represent the probability of the event for 3 consecutive draws. Using the tree diagram,

Find the probability of drawing;
i) Three red balls
ii) Two red balls
iii) Two green balls

$$
y=\cos ^{-1} x \quad \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

b) (i) Show that the derivative of is

$$
x^{2}+y^{2}-2 x-6 y=0
$$

(ii) If

$$
\frac{d^{2} y}{d x^{2}}
$$

Find at $x=3$ and $y=2$

[^0]: Instructions to Candidates:
 You should have the following for this examination
 Answer booklet
 This paper consists of FIVE questions
 Answer question ONE (COMPULSORY) and any other TWO questions
 This paper consist of THREE printed pages

