

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN SCIENCE & LABORATORY TECHNIQUES

AMA 2104: CALCULUS FOR SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2011 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer booklet This paper consists of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions This paper consist of **THREE** printed pages a) (i) Make y, the subject of the following

$$r = \frac{ay^2}{y^2 + b}$$

$$(3+x)^{6}$$

(ii) Expand up to the term x^4 , hence evaluate $(3.003)^6$ correct to 3 decimal places

marks)

- (iii) A piece of wire is folded into a rectangle whose dimensions are such that its length is 4cm and Longer than its width. The area of the rectangle so formed 21cm2. Determine:
 - I. The dimension of the rectangle (3 marks)
 - II.The perimeter of the rectangle(2 marks)
- b) Using first principle, differentiate

 $y = x^{-2} + 2$

c) The table shows the distribution of masses of 100 first year medical students.

Mass kg	40 - 45	45 - 50	50 – 55	55 - 60	60 - 65	65 - 70
Frequency	9	12	22	28	19	10

Determine:-

(i)	The mean to the nearest kg.	(5 mar	·ks)
(ii)	The standard deviation	(6	marks)

QUESTION TWO (20 MARKS)

a)	Differentiate with respect to x				
	$y = e^x \cos x$				
	(i)	(5 marks)			
	$y = \frac{1nx}{\sin x}$				
	(ii)	(5 marks)			
	$y = 2x^3 - 2x^2 - 10x - 8$				
b)	Given the function				
	Determine;				
	(i) The turning points	(6 marks)			
	(ii) The normal and tangent equations at (1, 0)	(4 marks)			

QUESTION THREE (20 MARKS)

(3 marks)

(5

$$\frac{dy}{dx}$$

a) Find for the given parametric equations

$$X = \frac{2t-1}{1-t}$$

$$y = t^{2} + 1$$
(i)
$$x = \cos 2t$$

$$y = \sin t$$
(ii)
$$\int_{2}^{4} \frac{x^{2}}{4} + x^{2} + 1dx$$

b) (i)

(4 marks)

(ii) Determine the area bounded by the curve

$$y = 3x^2 + 6x - 8,$$

the x - axis and the ordinates x = 1 and x = 3

QUESTION FOUR (20 MARKS)

$$Z = (2x - y)(x + 3y)$$

a) If

Determine:-

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$$
 and

b) The distance S, metres, moved by a particle along a straight line after t, seconds in motion is given by

$$S = 8 + 10t^2 - 3t^3$$

Find:

	i)	The distance moved by the end of $t = 2$	(3 marks)
	ii)	The velocity of the particle at $t = 2$	(3 marks)
	iii)	The acceleration of the particle at $t = 2$	(3 marks)
	iv)	The value of t when the particle attains maximum velocity	(3 marks)
c)	Integrate		
	$\int_{-4}^{4} \frac{x^2 + 6x + 5}{x + 1}$		

(4 marks)

QUESTION FIVE (20 MARKS)

a) A bag contains 6 red balls and 4 green balls, one ball is drawn out of the bag at random and not replaced. Draw a tree diagram to represent the probability of the event for 3 consecutive draws. Using the tree diagram,

Find the probability of drawing;

- Three red balls
- i) ii) Two red balls
- iii) Two green balls

(2 marks) (4 marks) (4 marks)

$$y = \cos^{-1} x \qquad \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$
is

b) (i) Show that the derivative of

(5 marks)

$$x^2 + y^2 - 2x - 6y = 0$$

(ii) If

$$\frac{d^2 y}{dx^2}$$
Find at x = 3 and y = 2