THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN NAUTICAL SCIENCES
AMA 2102: MATHEMATICS FOR SCIENCE II
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet

This paper consist of TWO sections A \& B

Answer ALL questions in section A and THREE questions in section B
Each question in section A carries FOUR marks while each question in section B carries TWENTY marks.
This paper consists of THREE printed pages
SECTION A (COMPULSORY)

Question One (30 marks)

$$
O^{\circ} \leq \theta \leq 360^{\circ}
$$

a) Solve the following equations for :

$$
\text { i) } \begin{aligned}
& 5 \sin \theta+3=0 \\
& 2-4 \cos ^{2} \theta=0
\end{aligned}
$$

ii)

$$
1 / 2 \cot ^{2} \theta=1.3
$$

iii)

$$
8 \sin ^{2} \theta+2 \sin \theta-1=0
$$

iv)

$$
\sin \left(x+60^{\circ}\right)+\sin \left(x+120^{\circ}\right)=\sqrt{3} \cos x
$$

b) (i) Show that
(ii) Solve the equation:

$$
4 \sin \left(x-20^{\circ}\right)=5 \cos x
$$

$$
\begin{equation*}
\text { for values of } \mathrm{x} \text { between } 0^{\circ} \text { and } 90^{\circ} \tag{4marks}
\end{equation*}
$$

$$
\cot 2 x+\operatorname{cosec} 2 x=\cot x
$$

c) (i) Prove that
(ii) Prove the following identity

$$
1-\frac{\cot 2 \theta}{\cos ^{2} \theta}=\tan ^{2} \theta
$$

d) (i) Solve, by method of substitution, the system of equations:

$$
\begin{aligned}
& 3 x-2 y=12 \\
& x+3 y=-7
\end{aligned}
$$

$$
\frac{1}{x+y}=\frac{4}{27}, \frac{1}{2 x-y}=\frac{4}{33}
$$

(ii) Solve the system of equations

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$
0^{\circ} \leq \theta \leq 360^{\circ}
$$

a) Solve the following equation for

$$
\cos 5 t+\cos 3 t
$$

b) Express as a product

$$
\frac{\sin 4 x-\sin 2 x}{\cos 4 x+\cos 2 x}=\tan x
$$

c) Show that
d) (i) Express in polar co-ordinates the position ()
(ii) Sketch the Argand diagram representing the point in $\mathrm{d}(\mathrm{i})$

Question Three (20 marks)

a) Sketch the curve whose polar equation is $r=a(1+2 \cos \theta)$ for $0^{\circ} \leq \theta \leq 360^{\circ} \quad$ (10 marks)

$$
r=a(1+2 \cos \theta)
$$

b) Find the Cartesian equation of

$$
x^{2}+y^{2}=4 x
$$

c) Find the polar equation of a circle whose Cartesian equation is

Question Four (20 marks)

a) Find the polar equation of a line such that the perpendicular to it from the origin is of length p and makes an angle with the x-axis.
b) Plot the graph of the curve given parametrically by the equations.

$$
x=t^{2}-4 \quad y=t^{3}-4 t \text { and } \quad \text { for values of } t \text { from }-3 \text { to }+3
$$

c) Find the Cartesian equation of parametric equations.

$$
x=\sin \theta \quad y=\sin 2 \theta
$$

d) Obtain the parametric equations of the curve given by:

$$
\begin{equation*}
y^{2}=x^{3}-x^{2} \tag{4marks}
\end{equation*}
$$

Question Five (20 marks)

a) A point P is attached to a string of length 6 cm whose ends are attached to two fixed points A and $B, 4$ on a part. Find the equation of the locus of P.
b) Find the equation of the locus of a point P which moves so that it is equidistant from two points $\mathrm{A}(3,2)$ and $B(5,-1)$

$$
x y=6
$$

$$
2 y+3 x=0
$$

c) Find the equations of the tangents to the curve
which are parallel to the line

