

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) (A Centre of Excellence)

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN NAUTICAL SCIENCES

AMA 2102: MATHEMATICS FOR SCIENCE II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of **TWO** sections **A & B**

© 2012 - The Mombasa Polytechnic University College

Answer **ALL** questions in section **A** and **THREE** questions in section **B** Each question in section **A** carries **FOUR** marks while each question in section **B** carries **TWENTY** marks. This paper consists of **THREE** printed pages **SECTION A (COMPULSORY)**

Question One (30 marks)

$O^{\circ} \le \theta \le 360^{\circ}$ a) Solve the following equations for :	
$5\sin \theta + 3 = 0$ i) $2 - 4\cos^2 \theta = 0$ ii) $1/(1)$	(4 marks) (4 marks)
$\frac{1}{2}\cot^{2}\theta = 1.3$ iii) $8\sin^{2}\theta + 2\sin\theta - 1 = 0$ iv)	(4 marks) (4 marks)
$\sin(x+60^{\circ}) + \sin(x+120^{\circ}) = \sqrt{3} \cos x$ b) (i) Show that (ii) Solve the equation: $4\sin(x-20^{\circ}) = 5\cos x$	(4 marks)
for values of x between 0° and 90° $\cot 2x + \cos ec 2x = \cot x$ (i) Prove that	(4 marks) (4 marks)
(ii) Prove the following identity $1 - \frac{\cot 2\theta}{\cos^2 \theta} = \tan^2 \theta$ (i) Solve, by method of substitution, the system of equations: 3x - 2y = 12 $x + 3y = -7$	(4 marks) (4 marks)
$\frac{1}{x+y} = \frac{4}{27}, \ \frac{1}{2x-y} = \frac{4}{33}$ (ii) Solve the system of equations	(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$0^{\circ} \le \theta \le 360^{\circ}$$

a) Solve the following equation for

cos 5t + cos 3t b) Express as a product	(2 marks)
$\frac{\sin 4x - \sin 2x}{\cos 4x + \cos 2x} = \tan x$ c) Show that	(6 marks)
 - 4,3 d) (i) Express in polar co-ordinates the position () 	(3 marks)
(ii) Sketch the Argand diagram representing the point in d(i)	(1 marks)
Question Three (20 marks)	
a) Sketch the curve whose polar equation is $r = a(1 + 2\cos\theta)$ o ^o $\leq \theta \leq 360^{\circ}$ for	(10 marks)
$r = a(1 + 2\cos\theta)$ b) Find the Cartesian equation of	(6 marks)
$x^2 + y^2 = 4x$ c) Find the polar equation of a circle whose Cartesian equation is	(4 marks)
Question Four (20 marks)	
a) Find the polar equation of a line such that the perpendicular to it from the origin is of length p	
α makes an angle with the x-axis.	(3 marks)
b) Plot the graph of the curve given parametrically by the equations. $x = t^2 - 4$ $y = t^3 - 4t$ and for values of t from -3 to +3	(10 marks)
c) Find the Cartesian equation of parametric equations. $x = \sin \theta \ y = \sin 2\theta$	(10 marks)
	(3 marks)
d) Obtain the parametric equations of the curve given by: $y^2 = x^3 - x^2$	<i></i>
	(4 marks)

Question Five (20 marks)

and

- a) A point P is attached to a string of length 6cm whose ends are attached to two fixed points A and B, 4 on a part. Find the equation of the locus of P. (5 marks)
- b) Find the equation of the locus of a point P which moves so that it is equidistant from two points A(3,2) and B(5, -1) (5 marks)

xy = 6

c) Find the equations of the tangents to the curve

which are parallel to the line

(10 marks)

2y + 3x = 0